Suppr超能文献

联合CT血管造影(cCTA)与经导管主动脉瓣置换术(TAVR)规划以排除显著冠状动脉疾病(CAD):基于机器学习的CT血流储备分数(CT-FFR)的附加价值

Combined cCTA and TAVR Planning for Ruling Out Significant CAD: Added Value of ML-Based CT-FFR.

作者信息

Gohmann Robin F, Pawelka Konrad, Seitz Patrick, Majunke Nicolas, Heiser Linda, Renatus Katharina, Desch Steffen, Lauten Philipp, Holzhey David, Noack Thilo, Wilde Johannes, Kiefer Philipp, Krieghoff Christian, Lücke Christian, Gottschling Sebastian, Ebel Sebastian, Borger Michael A, Thiele Holger, Panknin Christoph, Horn Matthias, Abdel-Wahab Mohamed, Gutberlet Matthias

机构信息

Department of Diagnostic and Interventional Radiology, Heart Center Leipzig, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany.

Department of Diagnostic and Interventional Radiology, Heart Center Leipzig, Leipzig, Germany; Medical Faculty, University of Leipzig, Leipzig, Germany.

出版信息

JACC Cardiovasc Imaging. 2022 Mar;15(3):476-486. doi: 10.1016/j.jcmg.2021.09.013. Epub 2021 Nov 17.

Abstract

OBJECTIVES

The purpose of this study was to analyze the ability of machine-learning (ML)-based computed tomography (CT)-derived fractional flow reserve (CT-FFR) to further improve the diagnostic performance of coronary CT angiography (cCTA) for ruling out significant coronary artery disease (CAD) during pre-transcatheter aortic valve replacement (TAVR) evaluation in patients with a high pre-test probability for CAD.

BACKGROUND

CAD is a frequent comorbidity in patients undergoing TAVR. Current guidelines recommend its assessment before TAVR. If significant CAD can be excluded on cCTA, invasive coronary angiography (ICA) may be avoided. Although cCTA is a very sensitive test, it is limited by relatively low specificity and positive predictive value, particularly in high-risk patients.

METHODS

Overall, 460 patients (age 79.6 ± 7.4 years) undergoing pre-TAVR CT were included and examined with an electrocardiogram-gated CT scan of the heart and high-pitch scan of the vascular access route. Images were evaluated for significant CAD. Patients routinely underwent ICA (388/460), which was omitted at the discretion of the local Heart Team if CAD could be effectively ruled out on cCTA (72/460). CT examinations in which CAD could not be ruled out (CAD) (n = 272) underwent additional ML-based CT-FFR.

RESULTS

ML-based CT-FFR was successfully performed in 79.4% (216/272) of all CAD patients and correctly reclassified 17 patients as CAD negative. CT-FFR was not feasible in 20.6% because of reduced image quality (37/56) or anatomic variants (19/56). Sensitivity, specificity, positive predictive value, and negative predictive value were 94.9%, 52.0%, 52.2%, and 94.9%, respectively. The additional evaluation with ML-based CT-FFR increased accuracy by Δ+3.4% (CAD: Δ+6.0%) and raised the total number of examinations negative for CAD to 43.9% (202/460).

CONCLUSIONS

ML-based CT-FFR may further improve the diagnostic performance of cCTA by correctly reclassifying a considerable proportion of patients with morphological signs of obstructive CAD on cCTA during pre-TAVR evaluation. Thereby, CT-FFR has the potential to further reduce the need for ICA in this challenging elderly group of patients before TAVR.

摘要

目的

本研究旨在分析基于机器学习(ML)的计算机断层扫描(CT)衍生的血流储备分数(CT-FFR)在经导管主动脉瓣置换术(TAVR)术前评估中,对冠状动脉CT血管造影(cCTA)诊断性能的进一步提升能力,这些患者术前患冠状动脉疾病(CAD)的可能性较高,旨在排除严重CAD。

背景

CAD是接受TAVR患者常见的合并症。当前指南建议在TAVR术前进行评估。如果cCTA能够排除严重CAD,则可避免进行有创冠状动脉造影(ICA)。尽管cCTA是一项非常敏感的检查,但它受限于相对较低的特异性和阳性预测值,尤其是在高危患者中。

方法

总共纳入460例接受TAVR术前CT检查的患者(年龄79.6±7.4岁),并进行了心电图门控心脏CT扫描和血管通路的高螺距扫描。评估图像以确定是否存在严重CAD。患者常规接受ICA检查(388/460),如果根据cCTA能够有效排除CAD,则由当地心脏团队酌情省略ICA检查(72/460)。对于无法排除CAD的CT检查(CAD组)(n = 272),进行了基于ML的CT-FFR检查。

结果

在所有CAD患者中,79.4%(216/272)成功进行了基于ML的CT-FFR检查,并且有17例患者被正确重新分类为CAD阴性。由于图像质量下降(37/56)或解剖变异(19/56),20.6%的患者无法进行CT-FFR检查。敏感性、特异性、阳性预测值和阴性预测值分别为94.9%、52.0%、52.2%和94.9%。基于ML的CT-FFR的额外评估使准确性提高了Δ+3.4%(CAD组:Δ+6.0%),并使CAD阴性的检查总数增加到43.9%(202/460)。

结论

基于ML的CT-FFR可能通过在TAVR术前评估中正确重新分类相当一部分在cCTA上有阻塞性CAD形态学征象的患者,进一步提高cCTA的诊断性能。因此,CT-FFR有可能在这一具有挑战性的老年TAVR患者群体中进一步减少ICA的需求。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验