Suppr超能文献

基于放射组学的模型预测前列腺癌患者淋巴结受累情况的研究进展

Development of a Radiomic-Based Model Predicting Lymph Node Involvement in Prostate Cancer Patients.

作者信息

Bourbonne Vincent, Jaouen Vincent, Nguyen Truong An, Tissot Valentin, Doucet Laurent, Hatt Mathieu, Visvikis Dimitris, Pradier Olivier, Valéri Antoine, Fournier Georges, Schick Ulrike

机构信息

Radiation Oncology Department, University Hospital, 29200 Brest, France.

LaTIM, UMR 1101, INSERM, University Brest, 29200 Brest, France.

出版信息

Cancers (Basel). 2021 Nov 12;13(22):5672. doi: 10.3390/cancers13225672.

Abstract

Significant advances in lymph node involvement (LNI) risk modeling in prostate cancer (PCa) have been achieved with the addition of visual interpretation of magnetic resonance imaging (MRI) data, but it is likely that quantitative analysis could further improve prediction models. In this study, we aimed to develop and internally validate a novel LNI risk prediction model based on radiomic features extracted from preoperative multimodal MRI. All patients who underwent a preoperative MRI and radical prostatectomy with extensive lymph node dissection were retrospectively included in a single institution. Patients were randomly divided into the training (60%) and testing (40%) sets. Radiomic features were extracted from the index tumor volumes, delineated on the apparent diffusion coefficient corrected map and the T2 sequences. A ComBat harmonization method was applied to account for inter-site heterogeneity. A prediction model was trained using a neural network approach (Multilayer Perceptron Network, SPSS v24.0©) combining clinical, radiomic and all features. It was then evaluated on the testing set and compared to the current available models using the Receiver Operative Characteristics and the C-Index. Two hundred and eighty patients were included, with a median age of 65.2 y (45.3-79.6), a mean PSA level of 9.5 ng/mL (1.04-63.0) and 79.6% of ISUP ≥ 2 tumors. LNI occurred in 51 patients (18.2%), with a median number of extracted nodes of 15 (10-19). In the testing set, with their respective cutoffs applied, the Partin, Roach, Yale, MSKCC, Briganti 2012 and 2017 models resulted in a C-Index of 0.71, 0.66, 0.55, 0.67, 0.65 and 0.73, respectively, while our proposed combined model resulted in a C-Index of 0.89 in the testing set. Radiomic features extracted from the preoperative MRI scans and combined with clinical features through a neural network seem to provide added predictive performance compared to state of the art models regarding LNI risk prediction in PCa.

摘要

前列腺癌(PCa)淋巴结受累(LNI)风险建模已取得显著进展,通过增加磁共振成像(MRI)数据的视觉解读实现了这一点,但定量分析可能会进一步改进预测模型。在本研究中,我们旨在基于从术前多模态MRI提取的影像组学特征,开发并内部验证一种新型LNI风险预测模型。所有接受术前MRI和广泛淋巴结清扫的根治性前列腺切除术的患者均被回顾性纳入单一机构研究。患者被随机分为训练集(60%)和测试集(40%)。影像组学特征从在表观扩散系数校正图和T2序列上勾勒出的索引肿瘤体积中提取。应用ComBat归一化方法来解决不同站点间的异质性。使用神经网络方法(多层感知器网络,SPSS v24.0©)结合临床、影像组学和所有特征训练预测模型。然后在测试集上对其进行评估,并使用受试者工作特征曲线和C指数与当前可用模型进行比较。纳入了280例患者,中位年龄为65.2岁(45.3 - 79.6岁),平均前列腺特异性抗原(PSA)水平为9.5 ng/mL(1.04 - 63.0),国际泌尿病理学会(ISUP)≥2级肿瘤占79.6%。51例患者发生LNI(18.2%),提取淋巴结的中位数为15个(10 - 19个)。在测试集中,应用各自的截断值时,Partin、Roach、耶鲁、纪念斯隆凯特琳癌症中心(MSKCC)、Briganti 2012和2017模型的C指数分别为0.71、0.66、0.55、0.67、0.65和0.73,而我们提出的联合模型在测试集中的C指数为0.89。与现有模型相比,从术前MRI扫描中提取并通过神经网络与临床特征相结合的影像组学特征,在PCa的LNI风险预测方面似乎提供了更高的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c66/8616049/1bf1a41ef637/cancers-13-05672-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验