Suppr超能文献

用于细菌诊疗的等离子体金纳米岛薄膜

Plasmonic Gold Nanoisland Film for Bacterial Theranostics.

作者信息

Tan Shih-Hua, Yougbaré Sibidou, Tao Hsuan-Ya, Chang Che-Chang, Kuo Tsung-Rong

机构信息

Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan.

Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso.

出版信息

Nanomaterials (Basel). 2021 Nov 21;11(11):3139. doi: 10.3390/nano11113139.

Abstract

Plasmonic nanomaterials have been intensively explored for applications in biomedical detection and therapy for human sustainability. Herein, plasmonic gold nanoisland (NI) film (AuNIF) was fabricated onto a glass substrate by a facile seed-mediated growth approach. The structure of the tortuous gold NIs of the AuNIF was demonstrated by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Based on the ultraviolet-visible spectrum, the AuNIF revealed plasmonic absorption with maximum intensity at 624 nm. With the change to the surface topography created by the NIs, the capture efficiency of () by the AuNIF was significantly increased compared to that of the glass substrate. The AuNIF was applied as a surface-enhanced Raman scattering (SERS) substrate to enhance the Raman signal of . Moreover, the plasmonic AuNIF exhibited a superior photothermal effect under irradiation with simulated AM1.5 sunlight. For photothermal therapy, the AuNIF also displayed outstanding efficiency in the photothermal killing of . Using a combination of SERS detection and photothermal therapy, the AuNIF could be a promising platform for bacterial theranostics.

摘要

等离子体纳米材料已被广泛探索用于生物医学检测和治疗以实现人类可持续发展。在此,通过一种简便的种子介导生长方法在玻璃基板上制备了等离子体金纳米岛(NI)薄膜(AuNIF)。通过扫描电子显微镜和能量色散X射线光谱证实了AuNIF中曲折的金纳米岛的结构。基于紫外可见光谱,AuNIF在624nm处显示出具有最大强度的等离子体吸收。随着纳米岛产生的表面形貌的变化,与玻璃基板相比,AuNIF对()的捕获效率显著提高。AuNIF被用作表面增强拉曼散射(SERS)基板以增强()的拉曼信号。此外,等离子体AuNIF在模拟AM1.5太阳光照射下表现出优异的光热效应。对于光热治疗,AuNIF在对()的光热杀伤方面也显示出出色的效率。通过结合SERS检测和光热治疗,AuNIF可能成为细菌诊疗的一个有前景的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea09/8621882/08c5dd9845dc/nanomaterials-11-03139-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验