Suppr超能文献

无监督学习在冠状动脉疾病亚组自动检测中的应用。

Unsupervised Learning for Automated Detection of Coronary Artery Disease Subgroups.

机构信息

Division of Vascular Surgery Department of Surgery Stanford University School of Medicine Stanford CA.

Center for Biomedical Informatics Research Stanford University Stanford CA.

出版信息

J Am Heart Assoc. 2021 Dec 7;10(23):e021976. doi: 10.1161/JAHA.121.021976. Epub 2021 Nov 30.

Abstract

Background The promise of precision population health includes the ability to use robust patient data to tailor prevention and care to specific groups. Advanced analytics may allow for automated detection of clinically informative subgroups that account for clinical, genetic, and environmental variability. This study sought to evaluate whether unsupervised machine learning approaches could interpret heterogeneous and missing clinical data to discover clinically important coronary artery disease subgroups. Methods and Results The Genetic Determinants of Peripheral Arterial Disease study is a prospective cohort that includes individuals with newly diagnosed and/or symptomatic coronary artery disease. We applied generalized low rank modeling and K-means cluster analysis using 155 phenotypic and genetic variables from 1329 participants. Cox proportional hazard models were used to examine associations between clusters and major adverse cardiovascular and cerebrovascular events and all-cause mortality. We then compared performance of risk stratification based on clusters and the American College of Cardiology/American Heart Association pooled cohort equations. Unsupervised analysis identified 4 phenotypically and prognostically distinct clusters. All-cause mortality was highest in cluster 1 (oldest/most comorbid; 26%), whereas major adverse cardiovascular and cerebrovascular event rates were highest in cluster 2 (youngest/multiethnic; 41%). Cluster 4 (middle-aged/healthiest behaviors) experienced more incident major adverse cardiovascular and cerebrovascular events (30%) than cluster 3 (middle-aged/lowest medication adherence; 23%), despite apparently similar risk factor and lifestyle profiles. In comparison with the pooled cohort equations, cluster membership was more informative for risk assessment of myocardial infarction, stroke, and mortality. Conclusions Unsupervised clustering identified 4 unique coronary artery disease subgroups with distinct clinical trajectories. Flexible unsupervised machine learning algorithms offer the ability to meaningfully process heterogeneous patient data and provide sharper insights into disease characterization and risk assessment. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT00380185.

摘要

背景 精准人群健康的前景包括利用强大的患者数据为特定群体定制预防和护理的能力。先进的分析方法可能允许自动检测到能够解释临床、遗传和环境变异性的具有临床意义的亚组。本研究旨在评估无监督机器学习方法是否能够解释异质和缺失的临床数据,以发现具有临床意义的冠状动脉疾病亚组。

方法和结果 外周动脉疾病遗传学研究是一项前瞻性队列研究,纳入了新诊断和/或有症状的冠状动脉疾病患者。我们使用来自 1329 名参与者的 155 个表型和遗传变量,应用广义低秩模型和 K-均值聚类分析。使用 Cox 比例风险模型来检验簇与主要不良心血管和脑血管事件以及全因死亡率之间的关联。然后,我们比较了基于簇的风险分层与美国心脏病学会/美国心脏协会(ACC/AHA) pooled cohort equations 的性能。无监督分析确定了 4 个表型和预后明显不同的簇。簇 1(年龄最大/合并症最多;26%)的全因死亡率最高,而簇 2(年龄最小/多民族;41%)的主要不良心血管和脑血管事件发生率最高。尽管簇 4(中年/最健康的行为)的危险因素和生活方式特征与簇 3(中年/最低药物依从性;23%)相似,但簇 4 的主要不良心血管和脑血管事件发生率(30%)高于簇 3(23%)。与 pooled cohort equations 相比,簇成员身份对于心肌梗死、卒中和死亡率的风险评估更具信息性。

结论 无监督聚类确定了 4 个具有独特临床轨迹的独特冠状动脉疾病亚组。灵活的无监督机器学习算法能够有效地处理异质的患者数据,并提供更深入的疾病特征和风险评估见解。

登记网址

https://www.clinicaltrials.gov;唯一标识符:NCT00380185。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa52/9075403/b541909c6aaa/JAH3-10-e021976-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验