Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195.
National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892.
J Neurosci. 2022 Feb 16;42(7):1254-1274. doi: 10.1523/JNEUROSCI.0793-21.2021. Epub 2021 Dec 23.
Primates explore their visual environment by making frequent saccades, discrete and ballistic eye movements that direct the fovea to specific regions of interest. Saccades produce large and rapid changes in input. The magnitude of these changes and the limited signaling range of visual neurons mean that effective encoding requires rapid adaptation. Here, we explore how macaque cone photoreceptors maintain sensitivity under these conditions. Adaptation makes cone responses to naturalistic stimuli highly nonlinear and dependent on stimulus history. Such responses cannot be explained by linear or linear-nonlinear models but are well explained by a biophysical model of phototransduction based on well-established biochemical interactions. The resulting model can predict cone responses to a broad range of stimuli and enables the design of stimuli that elicit specific (e.g., linear) cone photocurrents. These advances will provide a foundation for investigating the contributions of cone phototransduction and post-transduction processing to visual function. We know a great deal about adaptational mechanisms that adjust sensitivity to slow changes in visual inputs such as the rising or setting sun. We know much less about the rapid adaptational mechanisms that are essential for maintaining sensitivity as gaze shifts around a single visual scene. We characterize how phototransduction in cone photoreceptors adapts to rapid changes in input similar to those encountered during natural vision. We incorporate these measurements into a quantitative model that can predict cone responses across a broad range of stimuli. This model not only shows how cone phototransduction aids the encoding of natural inputs but also provides a tool to identify the role of the cone responses in shaping those of downstream visual neurons.
灵长类动物通过频繁的扫视来探索它们的视觉环境,扫视是一种离散的、弹道式的眼球运动,使中央凹注视特定的感兴趣区域。扫视会导致输入发生大而快速的变化。这些变化的幅度和视觉神经元的有限信号传递范围意味着有效的编码需要快速适应。在这里,我们探讨了猕猴视锥细胞在这些条件下如何保持敏感性。适应使视锥细胞对自然刺激的反应高度非线性,并依赖于刺激历史。这种反应不能用线性或线性-非线性模型来解释,但可以用基于成熟生化相互作用的光转导的生物物理模型很好地解释。由此产生的模型可以预测广泛刺激下的视锥细胞反应,并能设计出引发特定(如线性)视锥光电流的刺激。这些进展将为研究视锥光转导和转导后处理对视觉功能的贡献提供基础。我们对适应机制了解很多,这些机制可以调整对视觉输入(如日出或日落)缓慢变化的敏感性。我们对在单个视觉场景周围注视时维持敏感性所必需的快速适应机制知之甚少。我们描述了视锥感受器中的光转导如何适应类似于自然视觉中遇到的输入的快速变化。我们将这些测量结果纳入一个可以预测广泛刺激下视锥反应的定量模型。该模型不仅显示了视锥光转导如何有助于对自然输入的编码,还提供了一种工具来识别视锥反应在塑造下游视觉神经元反应中的作用。