Suppr超能文献

SIR 模型的单剂扩展描述了流动性限制对 COVID-19 疫情的影响。

A single-agent extension of the SIR model describes the impact of mobility restrictions on the COVID-19 epidemic.

机构信息

Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028, Barcelona, Spain.

CNR-ISC, Institute for Complex Systems UOS "Sapienza", Piazzale A. Moro 2, 00185, Rome, Italy.

出版信息

Sci Rep. 2021 Dec 28;11(1):24467. doi: 10.1038/s41598-021-03721-x.

Abstract

Mobility restrictions are successfully used to contain the diffusion of epidemics. In this work we explore their effect on the epidemic growth by investigating an extension of the Susceptible-Infected-Removed (SIR) model in which individual mobility is taken into account. In the model individual agents move on a chessboard with a Lévy walk and, within each square, epidemic spreading follows the standard SIR model. These simple rules allow to reproduce the sub-exponential growth of the epidemic evolution observed during the Covid-19 epidemic waves in several countries and which cannot be captured by the standard SIR model. We show that we can tune the slowing-down of the epidemic spreading by changing the dynamics of the agents from Lévy to Brownian and we investigate how the interplay among different containment strategies mitigate the epidemic spreading. Finally we demonstrate that we can reproduce the epidemic evolution of the first and second COVID-19 waves in Italy using only 3 parameters, i.e , the infection rate, the removing rate, and the mobility in the country. We provide an estimate of the peak reduction due to imposed mobility restrictions, i. e., the so-called flattening the curve effect. Although based on few ingredients, the model captures the kinetic of the epidemic waves, returning mobility values that are consistent with a lock-down intervention during the first wave and milder limitations, associated to a weaker peak reduction, during the second wave.

摘要

流动性限制被成功用于控制传染病的传播。在这项工作中,我们通过研究 Susceptible-Infected-Removed(SIR)模型的扩展来探索其对传染病增长的影响,该模型考虑了个体的流动性。在该模型中,个体代理在棋盘上移动,采用 Lévy 漫步,而在每个方格内,传染病传播遵循标准的 SIR 模型。这些简单的规则允许再现 COVID-19 传染病波在多个国家观察到的传染病进化的次指数增长,而这无法通过标准的 SIR 模型捕捉到。我们表明,我们可以通过将代理的动力学从 Lévy 更改为布朗运动来调整传染病传播的减速,并研究不同遏制策略之间的相互作用如何减轻传染病的传播。最后,我们证明我们可以使用仅 3 个参数来再现意大利 COVID-19 第一波和第二波的传染病进化,即感染率、去除率和该国的流动性。我们提供了由于强制的流动性限制而导致的峰值减少的估计,即所谓的“曲线变平”效应。尽管基于少数成分,该模型捕捉到了传染病波的动力学,返回的流动性值与第一波期间的封锁干预以及与较弱的峰值减少相关的第二波期间的限制一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79d4/8714823/f87b34fffd61/41598_2021_3721_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验