Department of Computer Science (CUCEI), University of Guadalajara, Guadalajara 44430, Mexico.
Department of Automatic Control, Technical University of Catalonia UPC, 08034 Barcelona, Spain.
Sensors (Basel). 2021 Dec 29;22(1):210. doi: 10.3390/s22010210.
This work presents a hybrid visual-based SLAM architecture that aims to take advantage of the strengths of each of the two main methodologies currently available for implementing visual-based SLAM systems, while at the same time minimizing some of their drawbacks. The main idea is to implement a local SLAM process using a filter-based technique, and enable the tasks of building and maintaining a consistent global map of the environment, including the loop closure problem, to use the processes implemented using optimization-based techniques. Different variants of visual-based SLAM systems can be implemented using the proposed architecture. This work also presents the implementation case of a full monocular-based SLAM system for unmanned aerial vehicles that integrates additional sensory inputs. Experiments using real data obtained from the sensors of a quadrotor are presented to validate the feasibility of the proposed approach.
本工作提出了一种混合视觉 SLAM 架构,旨在利用当前用于实现视觉 SLAM 系统的两种主要方法的优势,同时最小化它们的一些缺点。主要思想是使用基于滤波器的技术实现局部 SLAM 过程,并使构建和维护环境一致的全局地图的任务,包括循环闭合问题,能够使用基于优化技术实现的过程。可以使用所提出的架构实现不同变体的基于视觉的 SLAM 系统。本工作还介绍了一种用于无人机的全单目视觉 SLAM 系统的实现案例,该系统集成了额外的传感器输入。使用从四旋翼飞行器传感器获得的真实数据进行了实验,以验证所提出方法的可行性。