Department of Statistics, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.
Department of Computer Science, University of Surrey, Guildford, Surrey, UK.
Transl Vis Sci Technol. 2022 Jan 3;11(1):11. doi: 10.1167/tvst.11.1.11.
To compare supervised transfer learning to semisupervised learning for their ability to learn in-depth knowledge with limited data in the optical coherence tomography (OCT) domain.
Transfer learning with EfficientNet-B4 and semisupervised learning with SimCLR are used in this work. The largest public OCT dataset, consisting of 108,312 images and four categories (choroidal neovascularization, diabetic macular edema, drusen, and normal) is used. In addition, two smaller datasets are constructed, containing 31,200 images for the limited version and 4000 for the mini version of the dataset. To illustrate the effectiveness of the developed models, local interpretable model-agnostic explanations and class activation maps are used as explainability techniques.
The proposed transfer learning approach using the EfficientNet-B4 model trained on the limited dataset achieves an accuracy of 0.976 (95% confidence interval [CI], 0.963, 0.983), sensitivity of 0.973 and specificity of 0.991. The semisupervised based solution with SimCLR using 10% labeled data and the limited dataset performs with an accuracy of 0.946 (95% CI, 0.932, 0.960), sensitivity of 0.941, and specificity of 0.983.
Semisupervised learning has a huge potential for datasets that contain both labeled and unlabeled inputs, generally, with a significantly smaller number of labeled samples. The semisupervised based solution provided with merely 10% labeled data achieves very similar performance to the supervised transfer learning that uses 100% labeled samples.
Semisupervised learning enables building performant models while requiring less expertise effort and time by using to good advantage the abundant amount of available unlabeled data along with the labeled samples.
比较监督式迁移学习和半监督学习在利用有限的光学相干断层扫描(OCT)领域数据学习深入知识的能力。
本研究使用 EfficientNet-B4 的迁移学习和 SimCLR 的半监督学习。使用了最大的公共 OCT 数据集,由 108312 张图像和四个类别(脉络膜新生血管、糖尿病黄斑水肿、玻璃膜疣和正常)组成。此外,构建了两个较小的数据集,一个包含 31200 张图像的有限数据集,另一个包含 4000 张图像的迷你数据集。为了说明所开发模型的有效性,使用局部可解释模型不可知解释和类激活图作为可解释性技术。
在有限数据集上使用 EfficientNet-B4 模型进行的迁移学习方法达到了 0.976 的准确率(95%置信区间[CI],0.963,0.983),敏感性为 0.973,特异性为 0.991。基于 SimCLR 的半监督解决方案使用 10%的标记数据和有限数据集的准确率为 0.946(95%CI,0.932,0.960),敏感性为 0.941,特异性为 0.983。
半监督学习对于包含有标记和无标记输入的数据集具有巨大的潜力,通常情况下,只需使用少量的有标记样本。基于半监督的解决方案仅使用 10%的标记数据,就能达到与使用 100%标记样本的监督式迁移学习非常相似的性能。
原文中的 "SimCLR" 是一种半监督学习算法,而不是一个缩写,因此我将其翻译成中文 "SimCLR"。
原文中的 "OCT" 是 "Optical Coherence Tomography" 的缩写,因此我将其翻译成中文 "OCT"。
原文中的 "CI" 是 "Confidence Interval" 的缩写,因此我将其翻译成中文 "CI"。