AI for Good Research Lab, Microsoft, Seattle, WA, USA.
Intelligent Retinal Imaging Systems, Pensacola, FL, USA.
Sci Rep. 2022 Feb 2;12(1):1716. doi: 10.1038/s41598-022-05532-0.
The rapid evolution of the novel coronavirus disease (COVID-19) pandemic has resulted in an urgent need for effective clinical tools to reduce transmission and manage severe illness. Numerous teams are quickly developing artificial intelligence approaches to these problems, including using deep learning to predict COVID-19 diagnosis and prognosis from chest computed tomography (CT) imaging data. In this work, we assess the value of aggregated chest CT data for COVID-19 prognosis compared to clinical metadata alone. We develop a novel patient-level algorithm to aggregate the chest CT volume into a 2D representation that can be easily integrated with clinical metadata to distinguish COVID-19 pneumonia from chest CT volumes from healthy participants and participants with other viral pneumonia. Furthermore, we present a multitask model for joint segmentation of different classes of pulmonary lesions present in COVID-19 infected lungs that can outperform individual segmentation models for each task. We directly compare this multitask segmentation approach to combining feature-agnostic volumetric CT classification feature maps with clinical metadata for predicting mortality. We show that the combination of features derived from the chest CT volumes improve the AUC performance to 0.80 from the 0.52 obtained by using patients' clinical data alone. These approaches enable the automated extraction of clinically relevant features from chest CT volumes for risk stratification of COVID-19 patients.
新型冠状病毒病(COVID-19)大流行的迅速演变导致迫切需要有效的临床工具来减少传播和治疗重症。许多团队正在迅速开发针对这些问题的人工智能方法,包括使用深度学习从胸部计算机断层扫描(CT)成像数据预测 COVID-19 的诊断和预后。在这项工作中,我们评估了与仅临床元数据相比,聚合胸部 CT 数据对 COVID-19 预后的价值。我们开发了一种新颖的患者级算法,可将胸部 CT 体积聚合为 2D 表示形式,可与临床元数据轻松集成,以区分 COVID-19 肺炎与来自健康参与者和患有其他病毒性肺炎的参与者的胸部 CT 体积。此外,我们提出了一种用于联合分割 COVID-19 感染肺部中不同类型肺部病变的多任务模型,该模型可以胜过每个任务的单独分割模型。我们直接将这种多任务分割方法与将与特征无关的容积 CT 分类特征图与临床元数据相结合,以预测死亡率进行比较。我们表明,从胸部 CT 体积中提取的特征组合可将 AUC 性能从仅使用患者临床数据获得的 0.52 提高到 0.80。这些方法能够从胸部 CT 体积中自动提取临床相关特征,以对 COVID-19 患者进行风险分层。