文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

绳状篮状菌用于治疗应用的银纳米颗粒生物合成及安全性评估

Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation.

作者信息

El Deeb Bahig A, Faheem Gerges G, Bakhit Mahmoud S

机构信息

Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524, Egypt.

Higher Technological Institute of Applied Health Science in Sohag, Ministry of Higher Education, Cairo, Egypt.

出版信息

Sci Rep. 2025 Apr 21;15(1):13750. doi: 10.1038/s41598-025-95899-7.


DOI:10.1038/s41598-025-95899-7
PMID:40258887
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12012204/
Abstract

The study investigated the capacity of the endophytic fungus Talaromyces funiculosus to biosynthesize extracellular AgNPs and assess their safety. The fungus was identified through morphological and phylogenetic analyses. The biosynthesized AgNPs were spherical crystalline, stable (6 months), and mono-dispersed (PDI: 0.007), exhibiting SPR at 422.5 nm, average diameter of 34.32 nm, and Zeta potential of -18.41 mV. The optimal biosynthesis conditions are 1 mM AgNO, 5 g biomass, pH 5.5, and a reaction temperature of 60 °C. Escherichia coli (bacterial strains) and Candida tropicalis (yeast strains) exhibited the highest susceptibility with inhibition zones of 26.3 mm and 22.3 mm, respectively, at 50 µg/mL of AgNPs, and MICs of 3.7 µg/mL and 6.3 µg/mL, respectively. AgNPs exhibited cytotoxicity with IC values of 48.11 ppm for HEK-293 and 35.88 ppm for Hep-G2 cells, showing selective toxicity toward cancer cells. They demonstrated antioxidant activity by increasing GSH (10.29 to 14.76 mmol/g) and reducing MDA (40.57 to 26.28 nmol/ml) at 48.11 ppm. AgNPs also enhanced IL-10 production (96.47 to 177.0 pg/mL) and reduced TNF-α levels (55.77 to 41.06 pg/mL), indicating their anti-inflammatory properties. These results support the safe use of low-dose AgNPs, however, further studies are needed to evaluate AgNPs for clinical uses.

摘要

该研究调查了内生真菌绳状篮状菌生物合成细胞外银纳米颗粒的能力,并评估了它们的安全性。通过形态学和系统发育分析鉴定了该真菌。生物合成的银纳米颗粒呈球形晶体,稳定(6个月)且单分散(多分散指数:0.007),在422.5nm处表现出表面等离子体共振,平均直径为34.32nm,zeta电位为-18.41mV。最佳生物合成条件为1mM硝酸银、5g生物量、pH5.5和60℃的反应温度。大肠杆菌(细菌菌株)和热带假丝酵母(酵母菌株)在50μg/mL银纳米颗粒时表现出最高敏感性,抑菌圈分别为26.3mm和22.3mm,最低抑菌浓度分别为3.7μg/mL和6.3μg/mL。银纳米颗粒对HEK-293细胞的半数抑制浓度值为48.11ppm,对Hep-G2细胞为35.88ppm,表现出对癌细胞的选择性毒性。在48.11ppm时,它们通过增加谷胱甘肽(从10.29至14.76mmol/g)和降低丙二醛(从40.57至26.28nmol/ml)表现出抗氧化活性。银纳米颗粒还增强了白细胞介素-10的产生(从96.47至177.0pg/mL)并降低了肿瘤坏死因子-α水平(从55.77至41.06pg/mL),表明它们具有抗炎特性。这些结果支持低剂量银纳米颗粒的安全使用,然而,需要进一步研究以评估银纳米颗粒的临床用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/e91903952179/41598_2025_95899_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/3260c1a2d01f/41598_2025_95899_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/26f9e6a91949/41598_2025_95899_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/4327484d4e9c/41598_2025_95899_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/bb54dc5b83c5/41598_2025_95899_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/23cc1921fb35/41598_2025_95899_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/e867bae9b938/41598_2025_95899_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/6a980a95a4bd/41598_2025_95899_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/f7cde9cff2f3/41598_2025_95899_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/5221ebd4d2b3/41598_2025_95899_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/be1f6d7083f0/41598_2025_95899_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/d3ccefbacc08/41598_2025_95899_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/e91903952179/41598_2025_95899_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/3260c1a2d01f/41598_2025_95899_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/26f9e6a91949/41598_2025_95899_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/4327484d4e9c/41598_2025_95899_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/bb54dc5b83c5/41598_2025_95899_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/23cc1921fb35/41598_2025_95899_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/e867bae9b938/41598_2025_95899_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/6a980a95a4bd/41598_2025_95899_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/f7cde9cff2f3/41598_2025_95899_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/5221ebd4d2b3/41598_2025_95899_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/be1f6d7083f0/41598_2025_95899_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/d3ccefbacc08/41598_2025_95899_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/316f/12012204/e91903952179/41598_2025_95899_Fig12_HTML.jpg

相似文献

[1]
Biosynthesis of silver nanoparticles by Talaromyces funiculosus for therapeutic applications and safety evaluation.

Sci Rep. 2025-4-21

[2]
Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities.

Int J Mol Sci. 2022-9-13

[3]
Green synthesis of silver nanoparticles using Prosopis juliflora bark extract: reaction optimization, antimicrobial and catalytic activities.

Artif Cells Nanomed Biotechnol. 2017-7-18

[4]
Mycosynthesis, characterization, anticancer and antibacterial activity of silver nanoparticles from endophytic fungus .

Int J Nanomedicine. 2019-5-9

[5]
Extracellular myco-synthesis of nano-silver using the fermentable yeasts Pichia kudriavzeviiHA-NY2 and Saccharomyces uvarumHA-NY3, and their effective biomedical applications.

Bioprocess Biosyst Eng. 2021-4

[6]
Biosynthesis of silver nanoparticles using isolated : characterization, antimicrobial activity, cytotoxicity, and their performance as antimicrobial agent for textile materials.

Prep Biochem Biotechnol. 2021

[7]
Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa.

ACS Appl Mater Interfaces. 2016-2

[8]
Characterization of Talaromyces islandicus-mediated silver nanoparticles and evaluation of their antibacterial and anticancer potential.

Microsc Res Tech. 2022-5

[9]
Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain.

World J Microbiol Biotechnol. 2018-1-5

[10]
Biogenic Synthesis and Characterization of Silver Nanoparticles With Cyanobacterium Oscillatoria salina Using Against MDR Pathogenic Bacteria and Their Antiproliferative and Toxicity Study.

Cell Biochem Funct. 2025-1

引用本文的文献

[1]
Recent Trends in Bioinspired Metal Nanoparticles for Targeting Drug-Resistant Biofilms.

Pharmaceuticals (Basel). 2025-7-5

[2]
Mycogenic Silver Nanoparticles: Promising Antimicrobials with Fungistatic Properties.

Int J Mol Sci. 2025-7-10

[3]
Nanomedicine Strategies in the Management of Inflammatory Bowel Disease and Colorectal Cancer.

Int J Mol Sci. 2025-7-4

本文引用的文献

[1]
Sweet flavor compounds produced by the endophytic fungus .

Food Sci Biotechnol. 2024-9-18

[2]
Clinically relevant evaluation of the antimicrobial and anti-inflammatory properties of nanocrystalline and nanomolecular silver.

Wound Repair Regen. 2025

[3]
Green-synthesis of silver nanoparticles AgNPs from Podocarpus macrophyllus for targeting GBM and LGG brain cancers via NOTCH2 gene interactions.

Sci Rep. 2024-10-26

[4]
Silver nanoparticles synthesized using aerial part of Achillea fragrantissima and evaluation of their bioactivities.

Sci Rep. 2024-10-21

[5]
Myco-Biosynthesis of Silver Nanoparticles, Optimization, Characterization, and In Silico Anticancer Activities by Molecular Docking Approach against Hepatic and Breast Cancer.

Biomolecules. 2024-9-18

[6]
Green Synthesis of Silver Nanoparticle Using Black Mulberry and Characterization, Phytochemical, and Bioactivity.

Antibiotics (Basel). 2024-7-24

[7]
Anti-inflammatory action of silver nanoparticles : systematic review and meta-analysis.

Heliyon. 2024-7-14

[8]
Green Synthesis of Silver Nanoparticles from Anthocyanin Extracts of Peruvian Purple Potato INIA 328-.

Nanomaterials (Basel). 2024-7-4

[9]
Anticancer efficacy of biosynthesized silver nanoparticles loaded with recombinant truncated parasporin-2 protein.

Sci Rep. 2024-7-5

[10]
Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment.

Signal Transduct Target Ther. 2024-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索