Brain and Mind Institute, Western University, London, Ontario, Canada.
Department of Computer Science, Western University, London, Ontario, Canada.
Hum Brain Mapp. 2022 Aug 15;43(12):3706-3720. doi: 10.1002/hbm.25878. Epub 2022 Apr 22.
One important approach to human brain mapping is to define a set of distinct regions that can be linked to unique functions. Numerous brain parcellations have been proposed, using cytoarchitectonic, structural, or functional magnetic resonance imaging (fMRI) data. The intrinsic smoothness of brain data, however, poses a problem for current methods seeking to compare different parcellations. For example, criteria that simply compare within-parcel to between-parcel similarity provide even random parcellations with a high value. Furthermore, the evaluation is biased by the spatial scale of the parcellation. To address this problem, we propose the distance-controlled boundary coefficient (DCBC), an unbiased criterion to evaluate discrete parcellations. We employ this new criterion to evaluate existing parcellations of the human neocortex in their power to predict functional boundaries for an fMRI data set with many different tasks, as well as for resting-state data. We find that common anatomical parcellations do not perform better than chance, suggesting that task-based functional boundaries do not align well with sulcal landmarks. Parcellations based on resting-state fMRI data perform well; in some cases, as well as a parcellation defined on the evaluation data itself. Finally, multi-modal parcellations that combine functional and anatomical criteria perform substantially worse than those based on functional data alone, indicating that functionally homogeneous regions often span major anatomical landmarks. Overall, the DCBC advances the field of functional brain mapping by providing an unbiased metric that compares the predictive ability of different brain parcellations to define brain regions that are functionally maximally distinct.
一种重要的人类大脑图谱绘制方法是定义一组可以与独特功能相关联的独特区域。已经提出了许多大脑分割方法,使用细胞构筑学、结构或功能磁共振成像 (fMRI) 数据。然而,大脑数据的固有平滑性给当前试图比较不同分割方法的方法带来了问题。例如,仅比较内部分割与外部分割相似性的标准为甚至随机分割提供了很高的值。此外,评估受到分割的空间尺度的影响。为了解决这个问题,我们提出了距离控制边界系数 (DCBC),这是一种用于评估离散分割的无偏标准。我们使用这个新的标准来评估人类新皮层的现有分割,以评估具有许多不同任务的 fMRI 数据集以及静息态数据的功能边界的能力。我们发现常见的解剖分割并不比随机分割表现更好,这表明基于任务的功能边界与脑沟标志不太一致。基于静息态 fMRI 数据的分割表现良好;在某些情况下,与在评估数据本身定义的分割一样好。最后,结合功能和解剖标准的多模态分割的表现明显不如仅基于功能数据的分割,这表明功能上同质的区域通常跨越主要的解剖标志。总体而言,DCBC 通过提供一种无偏的度量标准,比较了不同大脑分割定义功能上最大不同的大脑区域的预测能力,从而推进了功能大脑图谱绘制领域。