Suppr超能文献

高通量转录组学在抗击结核病中的贡献与未来

Contribution and Future of High-Throughput Transcriptomics in Battling Tuberculosis.

作者信息

Martínez-Pérez Amparo, Estévez Olivia, González-Fernández África

机构信息

Biomedical Research Center (CINBIO), Universidade de Vigo, Vigo, Spain.

Hospital Álvaro Cunqueiro, Galicia Sur Health Research Institute (IIS-GS), Vigo, Spain.

出版信息

Front Microbiol. 2022 Feb 24;13:835620. doi: 10.3389/fmicb.2022.835620. eCollection 2022.

Abstract

While Tuberculosis (TB) infection remains a serious challenge worldwide, big data and "" approaches have greatly contributed to the understanding of the disease. Transcriptomics have been used to tackle a wide variety of queries including diagnosis, treatment evolution, latency and reactivation, novel target discovery, vaccine response or biomarkers of protection. Although a powerful tool, the elevated cost and difficulties in data interpretation may hinder transcriptomics complete potential. Technology evolution and collaborative efforts among multidisciplinary groups might be key in its exploitation. Here, we discuss the main fields explored in TB using transcriptomics, and identify the challenges that need to be addressed for a real implementation in TB diagnosis, prevention and therapy.

摘要

虽然结核病感染在全球范围内仍然是一个严峻的挑战,但大数据和“ ”方法对该疾病的认识有很大贡献。转录组学已被用于解决各种各样的问题,包括诊断、治疗进展、潜伏和再激活、新靶点发现、疫苗反应或保护生物标志物。尽管转录组学是一种强大的工具,但成本高昂以及数据解读困难可能会阻碍其全部潜力的发挥。技术发展和多学科团队的合作努力可能是开发转录组学的关键。在这里,我们讨论了利用转录组学在结核病研究中探索的主要领域,并确定了在结核病诊断、预防和治疗中真正实施所需解决的挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92bb/8908424/72d1ad9755fc/fmicb-13-835620-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验