Suppr超能文献

通过机器学习技术改进日降水和温度的多模型集合预测。

Improving multiple model ensemble predictions of daily precipitation and temperature through machine learning techniques.

机构信息

Department of Water Resources and Ocean Engineering, National Institute of Technology Karnataka, Surathkal, Mangaluru, India.

Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, Mangaluru, India.

出版信息

Sci Rep. 2022 Mar 18;12(1):4678. doi: 10.1038/s41598-022-08786-w.

Abstract

Multi-Model Ensembles (MMEs) are used for improving the performance of GCM simulations. This study evaluates the performance of MMEs of precipitation, maximum temperature and minimum temperature over a tropical river basin in India developed by various techniques like arithmetic mean, Multiple Linear Regression (MLR), Support Vector Machine (SVM), Extra Tree Regressor (ETR), Random Forest (RF) and long short-term memory (LSTM). The 21 General Circulation Models (GCMs) from National Aeronautics Space Administration (NASA) Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) dataset and 13 GCMs of Coupled Model Inter-comparison Project, Phase 6 (CMIP6) are used for this purpose. The results of the study reveal that the application of a LSTM model for ensembling performs significantly better than models in the case of precipitation with a coefficient of determination (R) value of 0.9. In case of temperature, all the machine learning (ML) methods showed equally good performance, with RF and LSTM performing consistently well in all the cases of temperature with R value ranging from 0.82 to 0.93. Hence, based on this study RF and LSTM methods are recommended for creation of MMEs in the basin. In general, all ML approaches performed better than mean ensemble approach.

摘要

多模式集合(MME)用于提高 GCM 模拟的性能。本研究评估了通过各种技术(如算术平均值、多元线性回归(MLR)、支持向量机(SVM)、Extra Tree Regressor(ETR)、随机森林(RF)和长短期记忆(LSTM))开发的印度热带河流域降水、最高温度和最低温度的 MME 的性能。使用了来自美国国家航空航天局(NASA)地球交换全球每日下推数据集(NEX-GDDP)的 21 个通用环流模型(GCM)和耦合模型比较计划第 6 阶段(CMIP6)的 13 个 GCM 进行了这项研究。研究结果表明,在降水方面,应用 LSTM 模型进行集合的效果明显优于模型,其决定系数(R)值为 0.9。在温度方面,所有机器学习(ML)方法的表现都同样出色,在所有温度情况下,RF 和 LSTM 的表现都非常稳定,R 值范围从 0.82 到 0.93。因此,根据这项研究,建议在流域中使用 RF 和 LSTM 方法来创建 MME。一般来说,所有 ML 方法的表现都优于均值集合方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfb7/8933560/89bae1961fa9/41598_2022_8786_Fig3_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验