文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用术中受激拉曼组织学和深度神经网络快速、无标记检测弥漫性胶质瘤复发。

Rapid, label-free detection of diffuse glioma recurrence using intraoperative stimulated Raman histology and deep neural networks.

机构信息

Department of Neurosurgery, Ann Arbor, Michigan.

School of Medicine, Ann Arbor, Michigan.

出版信息

Neuro Oncol. 2021 Jan 30;23(1):144-155. doi: 10.1093/neuonc/noaa162.


DOI:10.1093/neuonc/noaa162
PMID:32672793
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8631085/
Abstract

BACKGROUND: Detection of glioma recurrence remains a challenge in modern neuro-oncology. Noninvasive radiographic imaging is unable to definitively differentiate true recurrence versus pseudoprogression. Even in biopsied tissue, it can be challenging to differentiate recurrent tumor and treatment effect. We hypothesized that intraoperative stimulated Raman histology (SRH) and deep neural networks can be used to improve the intraoperative detection of glioma recurrence. METHODS: We used fiber laser-based SRH, a label-free, nonconsumptive, high-resolution microscopy method (<60 sec per 1 × 1 mm2) to image a cohort of patients (n = 35) with suspected recurrent gliomas who underwent biopsy or resection. The SRH images were then used to train a convolutional neural network (CNN) and develop an inference algorithm to detect viable recurrent glioma. Following network training, the performance of the CNN was tested for diagnostic accuracy in a retrospective cohort (n = 48). RESULTS: Using patch-level CNN predictions, the inference algorithm returns a single Bernoulli distribution for the probability of tumor recurrence for each surgical specimen or patient. The external SRH validation dataset consisted of 48 patients (recurrent, 30; pseudoprogression, 18), and we achieved a diagnostic accuracy of 95.8%. CONCLUSION: SRH with CNN-based diagnosis can be used to improve the intraoperative detection of glioma recurrence in near-real time. Our results provide insight into how optical imaging and computer vision can be combined to augment conventional diagnostic methods and improve the quality of specimen sampling at glioma recurrence.

摘要

背景:在现代神经肿瘤学中,检测脑胶质瘤的复发仍然是一个挑战。无创影像学检查无法明确区分真正的复发与假性进展。即使在活检组织中,区分复发性肿瘤和治疗效果也具有挑战性。我们假设术中受激拉曼组织学(SRH)和深度神经网络可用于提高脑胶质瘤复发的术中检测能力。

方法:我们使用基于光纤激光的 SRH,这是一种无标记、非消耗性、高分辨率显微镜方法(每 1×1mm²<60 秒),对 35 例疑似复发性脑胶质瘤患者进行成像,这些患者接受了活检或切除。然后,我们使用 SRH 图像来训练卷积神经网络(CNN)并开发推理算法,以检测有活力的复发性脑胶质瘤。在网络训练完成后,我们在回顾性队列(n=48)中测试了 CNN 的诊断准确性。

结果:使用补丁级别的 CNN 预测,推理算法会为每个手术标本或患者的肿瘤复发概率返回一个单一的伯努利分布。外部 SRH 验证数据集包含 48 例患者(复发,30 例;假性进展,18 例),我们的诊断准确率为 95.8%。

结论:基于 CNN 的 SRH 诊断可用于实时提高脑胶质瘤复发的术中检测能力。我们的结果提供了有关如何将光学成像和计算机视觉相结合以增强传统诊断方法并提高脑胶质瘤复发时标本采样质量的见解。

相似文献

[1]
Rapid, label-free detection of diffuse glioma recurrence using intraoperative stimulated Raman histology and deep neural networks.

Neuro Oncol. 2021-1-30

[2]
Streamlined Intraoperative Brain Tumor Classification and Molecular Subtyping in Stereotactic Biopsies Using Stimulated Raman Histology and Deep Learning.

Clin Cancer Res. 2024-9-3

[3]
Stimulated Raman Histology for Rapid Intraoperative Diagnosis of Gliomas.

World Neurosurg. 2021-6

[4]
Rapid Automated Analysis of Skull Base Tumor Specimens Using Intraoperative Optical Imaging and Artificial Intelligence.

Neurosurgery. 2022-6-1

[5]
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.

Nat Med. 2020-1-6

[6]
Novel rapid intraoperative qualitative tumor detection by a residual convolutional neural network using label-free stimulated Raman scattering microscopy.

Acta Neuropathol Commun. 2022-8-6

[7]
Real-time intraoperative glioma diagnosis using fluorescence imaging and deep convolutional neural networks.

Eur J Nucl Med Mol Imaging. 2021-10

[8]
Rapid Intraoperative Diagnosis of Meningiomas using Stimulated Raman Histology.

World Neurosurg. 2021-6

[9]
Label-free brain tumor imaging using Raman-based methods.

J Neurooncol. 2021-2

[10]
Fast Real-Time Brain Tumor Detection Based on Stimulated Raman Histology and Self-Supervised Deep Learning Model.

J Imaging Inform Med. 2024-6

引用本文的文献

[1]
Influence of preprocessing of stimulated Raman scattering images on the performance of deep neural networks for detecting cancer tissue.

Quant Imaging Med Surg. 2025-9-1

[2]
Current and Future Applications of 5-Aminolevulinic Acid in Neurosurgical Oncology.

Cancers (Basel). 2025-4-15

[3]
Image Quality Assessment and Reliability Analysis of Artificial Intelligence-Based Tumor Classification of Stimulated Raman Histology of Tumor Biobank Samples.

Diagnostics (Basel). 2024-11-30

[4]
Artificial Intelligence-Assisted Stimulated Raman Histology: New Frontiers in Vibrational Tissue Imaging.

Cancers (Basel). 2024-11-22

[5]
Current Applications of Raman Spectroscopy in Intraoperative Neurosurgery.

Biomedicines. 2024-10-16

[6]
Multi-modal fusion and feature enhancement U-Net coupling with stem cell niches proximity estimation for voxel-wise GBM recurrence prediction.

Phys Med Biol. 2024-7-25

[7]
Localization of protoporphyrin IX during glioma-resection surgery via paired stimulated Raman histology and fluorescence microscopy.

Nat Biomed Eng. 2024-6

[8]
[Intraoperative stimulated Raman histology for personalized brain tumor surgery].

Chirurgie (Heidelb). 2024-4

[9]
Advances in Intraoperative Glioma Tissue Sampling and Infiltration Assessment.

Brain Sci. 2023-11-25

[10]
Inhibitor of Wnt receptor 1 suppresses the effects of Wnt1, Wnt3a and β‑catenin on the proliferation and migration of C6 GSCs induced by low‑dose radiation.

Oncol Rep. 2024-2

本文引用的文献

[1]
Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks.

Nat Med. 2020-1-6

[2]
Toward a standard pathological and molecular characterization of recurrent glioma in adults: a Response Assessment in Neuro-Oncology effort.

Neuro Oncol. 2020-4-15

[3]
Rapid intraoperative molecular genetic classification of gliomas using Raman spectroscopy.

Neurooncol Adv. 2019

[4]
Trends in the US and Canadian Pathologist Workforces From 2007 to 2017.

JAMA Netw Open. 2019-5-3

[5]
Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning.

Nat Med. 2018-9-17

[6]
Automated deep-neural-network surveillance of cranial images for acute neurologic events.

Nat Med. 2018-8-13

[7]
IDH1 mutation in human glioma induces chemical alterations that are amenable to optical Raman spectroscopy.

J Neurooncol. 2018-5-14

[8]
Pseudoprogression of brain tumors.

J Magn Reson Imaging. 2018-5-7

[9]
Glioma imaging in Europe: A survey of 220 centres and recommendations for best clinical practice.

Eur Radiol. 2018-3-13

[10]
Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy.

Nat Biomed Eng. 2017

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索