Department of Neurosurgery, Ann Arbor, Michigan.
School of Medicine, Ann Arbor, Michigan.
Neuro Oncol. 2021 Jan 30;23(1):144-155. doi: 10.1093/neuonc/noaa162.
BACKGROUND: Detection of glioma recurrence remains a challenge in modern neuro-oncology. Noninvasive radiographic imaging is unable to definitively differentiate true recurrence versus pseudoprogression. Even in biopsied tissue, it can be challenging to differentiate recurrent tumor and treatment effect. We hypothesized that intraoperative stimulated Raman histology (SRH) and deep neural networks can be used to improve the intraoperative detection of glioma recurrence. METHODS: We used fiber laser-based SRH, a label-free, nonconsumptive, high-resolution microscopy method (<60 sec per 1 × 1 mm2) to image a cohort of patients (n = 35) with suspected recurrent gliomas who underwent biopsy or resection. The SRH images were then used to train a convolutional neural network (CNN) and develop an inference algorithm to detect viable recurrent glioma. Following network training, the performance of the CNN was tested for diagnostic accuracy in a retrospective cohort (n = 48). RESULTS: Using patch-level CNN predictions, the inference algorithm returns a single Bernoulli distribution for the probability of tumor recurrence for each surgical specimen or patient. The external SRH validation dataset consisted of 48 patients (recurrent, 30; pseudoprogression, 18), and we achieved a diagnostic accuracy of 95.8%. CONCLUSION: SRH with CNN-based diagnosis can be used to improve the intraoperative detection of glioma recurrence in near-real time. Our results provide insight into how optical imaging and computer vision can be combined to augment conventional diagnostic methods and improve the quality of specimen sampling at glioma recurrence.
背景:在现代神经肿瘤学中,检测脑胶质瘤的复发仍然是一个挑战。无创影像学检查无法明确区分真正的复发与假性进展。即使在活检组织中,区分复发性肿瘤和治疗效果也具有挑战性。我们假设术中受激拉曼组织学(SRH)和深度神经网络可用于提高脑胶质瘤复发的术中检测能力。
方法:我们使用基于光纤激光的 SRH,这是一种无标记、非消耗性、高分辨率显微镜方法(每 1×1mm²<60 秒),对 35 例疑似复发性脑胶质瘤患者进行成像,这些患者接受了活检或切除。然后,我们使用 SRH 图像来训练卷积神经网络(CNN)并开发推理算法,以检测有活力的复发性脑胶质瘤。在网络训练完成后,我们在回顾性队列(n=48)中测试了 CNN 的诊断准确性。
结果:使用补丁级别的 CNN 预测,推理算法会为每个手术标本或患者的肿瘤复发概率返回一个单一的伯努利分布。外部 SRH 验证数据集包含 48 例患者(复发,30 例;假性进展,18 例),我们的诊断准确率为 95.8%。
结论:基于 CNN 的 SRH 诊断可用于实时提高脑胶质瘤复发的术中检测能力。我们的结果提供了有关如何将光学成像和计算机视觉相结合以增强传统诊断方法并提高脑胶质瘤复发时标本采样质量的见解。
World Neurosurg. 2021-6
Eur J Nucl Med Mol Imaging. 2021-10
World Neurosurg. 2021-6
J Neurooncol. 2021-2
Cancers (Basel). 2025-4-15
Cancers (Basel). 2024-11-22
Biomedicines. 2024-10-16
Chirurgie (Heidelb). 2024-4
Brain Sci. 2023-11-25
JAMA Netw Open. 2019-5-3
J Magn Reson Imaging. 2018-5-7