Suppr超能文献

使用 Giotto 分析空间转录组学数据。

Analyzing Spatial Transcriptomics Data Using Giotto.

机构信息

Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York.

Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, Massachusetts.

出版信息

Curr Protoc. 2022 Apr;2(4):e405. doi: 10.1002/cpz1.405.

Abstract

Spatial transcriptomic technologies have been developed rapidly in recent years. The addition of spatial context to expression data holds the potential to revolutionize many fields in biology. However, the lack of computational tools remains a bottleneck that is preventing the broader utilization of these technologies. Recently, we have developed Giotto as a comprehensive, generally applicable, and user-friendly toolbox for spatial transcriptomic data analysis and visualization. Giotto implements a rich set of algorithms to enable robust spatial data analysis. To help users get familiar with the Giotto environment and apply it effectively in analyzing new datasets, we will describe the detailed protocols for applying Giotto without any advanced programming skills. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Getting Giotto set up for use Basic Protocol 2: Pre-processing Basic Protocol 3: Clustering and cell-type identification Basic Protocol 4: Cell-type enrichment and deconvolution analyses Basic Protocol 5: Spatial structure analysis tools Basic Protocol 6: Spatial domain detection by using a hidden Markov random field model Support Protocol 1: Spatial proximity-associated cell-cell interactions Support Protocol 2: Assembly of a registered 3D Giotto object from 2D slices.

摘要

近年来,空间转录组学技术发展迅速。将空间背景添加到表达数据中有可能彻底改变生物学的许多领域。然而,计算工具的缺乏仍然是一个瓶颈,阻碍了这些技术的更广泛应用。最近,我们开发了 Giotto,作为一个全面、通用和用户友好的空间转录组数据分析和可视化工具包。Giotto 实现了一系列丰富的算法,以实现强大的空间数据分析。为了帮助用户熟悉 Giotto 环境并有效地将其应用于分析新数据集,我们将描述应用 Giotto 的详细协议,而无需任何高级编程技能。© 2022 威立出版公司。基本方案 1:设置 Giotto 以供使用基本方案 2:预处理基本方案 3:聚类和细胞类型识别基本方案 4:细胞类型富集和去卷积分析基本方案 5:空间结构分析工具基本方案 6:使用隐马尔可夫随机场模型进行空间域检测支持方案 1:空间邻近相关的细胞-细胞相互作用支持方案 2:从 2D 切片组装注册的 3D Giotto 对象。

相似文献

3
Computational solutions for spatial transcriptomics.空间转录组学的计算解决方案。
Comput Struct Biotechnol J. 2022 Sep 1;20:4870-4884. doi: 10.1016/j.csbj.2022.08.043. eCollection 2022.

引用本文的文献

本文引用的文献

2
Advances in spatial transcriptomic data analysis.空间转录组数据分析的进展。
Genome Res. 2021 Oct;31(10):1706-1718. doi: 10.1101/gr.275224.121.
4
Exploring tissue architecture using spatial transcriptomics.利用空间转录组学探索组织架构。
Nature. 2021 Aug;596(7871):211-220. doi: 10.1038/s41586-021-03634-9. Epub 2021 Aug 11.
5
Spatial omics and multiplexed imaging to explore cancer biology.空间组学和多重成像技术探索癌症生物学。
Nat Methods. 2021 Sep;18(9):997-1012. doi: 10.1038/s41592-021-01203-6. Epub 2021 Aug 2.
10
Method of the Year: spatially resolved transcriptomics.年度方法:空间分辨转录组学。
Nat Methods. 2021 Jan;18(1):9-14. doi: 10.1038/s41592-020-01033-y.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验