Suppr超能文献

一种用于指导卵巢癌治疗和识别有效生物标志物的弱监督深度学习方法。

A Weakly Supervised Deep Learning Method for Guiding Ovarian Cancer Treatment and Identifying an Effective Biomarker.

作者信息

Wang Ching-Wei, Lee Yu-Ching, Chang Cheng-Chang, Lin Yi-Jia, Liou Yi-An, Hsu Po-Chao, Chang Chun-Chieh, Sai Aung-Kyaw-Oo, Wang Chih-Hung, Chao Tai-Kuang

机构信息

Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan.

Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106335, Taiwan.

出版信息

Cancers (Basel). 2022 Mar 24;14(7):1651. doi: 10.3390/cancers14071651.

Abstract

Ovarian cancer is a common malignant gynecological disease. Molecular target therapy, i.e., antiangiogenesis with bevacizumab, was found to be effective in some patients of epithelial ovarian cancer (EOC). Although careful patient selection is essential, there are currently no biomarkers available for routine therapeutic usage. To the authors’ best knowledge, this is the first automated precision oncology framework to effectively identify and select EOC and peritoneal serous papillary carcinoma (PSPC) patients with positive therapeutic effect. From March 2013 to January 2021, we have a database, containing four kinds of immunohistochemical tissue samples, including AIM2, c3, C5 and NLRP3, from patients diagnosed with EOC and PSPC and treated with bevacizumab in a hospital-based retrospective study. We developed a hybrid deep learning framework and weakly supervised deep learning models for each potential biomarker, and the experimental results show that the proposed model in combination with AIM2 achieves high accuracy 0.92, recall 0.97, F-measure 0.93 and AUC 0.97 for the first experiment (66% training and 34%testing) and high accuracy 0.86 ± 0.07, precision 0.9 ± 0.07, recall 0.85 ± 0.06, F-measure 0.87 ± 0.06 and AUC 0.91 ± 0.05 for the second experiment using five-fold cross validation, respectively. Both Kaplan-Meier PFS analysis and Cox proportional hazards model analysis further confirmed that the proposed AIM2-DL model is able to distinguish patients gaining positive therapeutic effects with low cancer recurrence from patients with disease progression after treatment (p < 0.005).

摘要

卵巢癌是一种常见的妇科恶性疾病。分子靶向治疗,即使用贝伐单抗进行抗血管生成治疗,在某些上皮性卵巢癌(EOC)患者中被发现是有效的。尽管仔细选择患者至关重要,但目前尚无可用于常规治疗的生物标志物。据作者所知,这是首个有效识别和选择对治疗有积极反应的EOC和腹膜浆液性乳头状癌(PSPC)患者的自动化精准肿瘤学框架。在一项基于医院的回顾性研究中,从2013年3月至2021年1月,我们有一个数据库,包含来自被诊断为EOC和PSPC并接受贝伐单抗治疗的患者的四种免疫组化组织样本,包括AIM2、c3、C5和NLRP3。我们为每个潜在生物标志物开发了一个混合深度学习框架和弱监督深度学习模型,实验结果表明,在第一个实验(66%训练和34%测试)中,所提出的模型与AIM2结合时,实现了高精度0.92、召回率0.97、F值0.93和AUC 0.97;在使用五折交叉验证的第二个实验中,分别实现了高精度0.86±0.07、精准率0.9±0.07、召回率0.85±0.06、F值0.87±0.06和AUC 0.91±0.05。Kaplan-Meier无进展生存期分析和Cox比例风险模型分析均进一步证实,所提出的AIM2-DL模型能够区分治疗后癌症复发率低且获得积极治疗效果的患者与疾病进展的患者(p<0.005)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/564c/8996991/3b86788fbdd8/cancers-14-01651-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验