Mosselhy Dina A, Kareinen Lauri, Kivistö Ilkka, Virtanen Jenni, Loikkanen Emil, Ge Yanling, Maunula Leena, Sironen Tarja
Department of Virology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.
Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland.
Nanomaterials (Basel). 2022 Mar 22;12(7):1037. doi: 10.3390/nano12071037.
With the continued scenario of the COVID-19 pandemic, the world is still seeking out-of-the-box solutions to break its transmission cycle and contain the pandemic. There are different transmission routes for viruses, including indirect transmission via surfaces. To this end, we used two relevant viruses in our study. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing the pandemic and human norovirus (HuNV), both known to be transmitted via surfaces. Several nanoformulations have shown attempts to inhibit SARS-CoV-2 and other viruses. However, a rigorous, similar inactivation scheme to inactivate the cords of two tedious viruses (SARS-CoV-2 Alpha variant and HuNV) is lacking. The present study demonstrates the inactivation of the SARS-CoV-2 Alpha variant and the decrease in the murine norovirus (MNV, a surrogate to HuNV) load after only one minute of contact to surfaces including copper-silver (Cu-Ag) nanocomposites. We thoroughly examined the physicochemical characteristics of such plated surfaces using diverse microscopy tools and found that Cu was the dominanting element in the tested three different surfaces (56, ~59, and ~48 wt%, respectively), hence likely playing the major role of Alpha and MNV inactivation followed by the Ag content (28, ~13, and ~11 wt%, respectively). These findings suggest that the administration of such surfaces within highly congested places (e.g., schools, public transportations, public toilets, and hospital and live-stock reservoirs) could break the SARS-CoV-2 and HuNV transmission. We suggest such an administration after an in-depth examination of the in vitro (especially on skin cells) and in vivo toxicity of the nanocomposite formulations and surfaces while also standardizing the physicochemical parameters, testing protocols, and animal models.
随着新冠疫情的持续,世界仍在寻找打破病毒传播周期并控制疫情的创新解决方案。病毒有不同的传播途径,包括通过表面的间接传播。为此,我们在研究中使用了两种相关病毒。引发疫情的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)和人诺如病毒(HuNV),二者均已知可通过表面传播。几种纳米制剂已尝试抑制SARS-CoV-2和其他病毒。然而,缺乏一种严格、类似的灭活方案来灭活两种棘手病毒(SARS-CoV-2阿尔法变体和HuNV)。本研究表明,仅与包括铜银(Cu-Ag)纳米复合材料在内的表面接触一分钟后,SARS-CoV-2阿尔法变体就会被灭活,鼠诺如病毒(MNV,HuNV的替代物)载量也会降低。我们使用多种显微镜工具全面检查了此类镀膜表面的物理化学特性,发现Cu是测试的三种不同表面中的主要元素(分别约为56%、59%和48%重量),因此可能在阿尔法变体和MNV的灭活中起主要作用,其次是Ag含量(分别约为28%、13%和11%重量)。这些发现表明,在人员高度密集的场所(如学校、公共交通工具、公共厕所、医院和牲畜蓄水池)使用此类表面材料可能会阻断SARS-CoV-2和HuNV的传播。我们建议在深入研究纳米复合制剂和表面材料的体外(尤其是对皮肤细胞)和体内毒性,并对物理化学参数、测试方案和动物模型进行标准化后再使用此类表面材料。