Zhang Huixian, Li Hailong, Dillman Jonathan R, Parikh Nehal A, He Lili
Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
Diagnostics (Basel). 2022 Mar 26;12(4):816. doi: 10.3390/diagnostics12040816.
Multi-contrast MRI images use different echo and repetition times to highlight different tissues. However, not all desired image contrasts may be available due to scan-time limitations, suboptimal signal-to-noise ratio, and/or image artifacts. Deep learning approaches have brought revolutionary advances in medical image synthesis, enabling the generation of unacquired image contrasts (e.g., T1-weighted MRI images) from available image contrasts (e.g., T2-weighted images). Particularly, CycleGAN is an advanced technique for image synthesis using unpaired images. However, it requires two separate image generators, demanding more training resources and computations. Recently, a switchable CycleGAN has been proposed to address this limitation and successfully implemented using CT images. However, it remains unclear if switchable CycleGAN can be applied to cross-contrast MRI synthesis. In addition, whether switchable CycleGAN is able to outperform original CycleGAN on cross-contrast MRI image synthesis is still an open question. In this paper, we developed a switchable CycleGAN model for image synthesis between multi-contrast brain MRI images using a large set of publicly accessible pediatric structural brain MRI images. We conducted extensive experiments to compare switchable CycleGAN with original CycleGAN both quantitatively and qualitatively. Experimental results demonstrate that switchable CycleGAN is able to outperform CycleGAN model on pediatric MRI brain image synthesis.
多对比度磁共振成像(MRI)图像使用不同的回波时间和重复时间来突出不同的组织。然而,由于扫描时间限制、次优的信噪比和/或图像伪影,并非所有所需的图像对比度都可用。深度学习方法在医学图像合成方面带来了革命性的进展,能够从可用的图像对比度(例如,T2加权图像)生成未获取的图像对比度(例如,T1加权MRI图像)。特别是,循环生成对抗网络(CycleGAN)是一种使用未配对图像进行图像合成的先进技术。然而,它需要两个单独的图像生成器,需要更多的训练资源和计算量。最近,有人提出了一种可切换的CycleGAN来解决这一限制,并已使用CT图像成功实现。然而,尚不清楚可切换的CycleGAN是否可应用于跨对比度MRI合成。此外,在跨对比度MRI图像合成方面,可切换的CycleGAN是否能够优于原始的CycleGAN仍然是一个悬而未决的问题。在本文中,我们使用大量公开可用的儿科结构脑MRI图像,开发了一种用于多对比度脑MRI图像之间图像合成的可切换CycleGAN模型。我们进行了广泛的实验,从定量和定性两方面将可切换的CycleGAN与原始的CycleGAN进行比较。实验结果表明,在儿科MRI脑图像合成方面,可切换的CycleGAN能够优于CycleGAN模型。