Suppr超能文献

嗜盐丝状真菌的代谢潜能——当前的视角。

Metabolic Potential of Halophilic Filamentous Fungi-Current Perspective.

机构信息

Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland.

出版信息

Int J Mol Sci. 2022 Apr 10;23(8):4189. doi: 10.3390/ijms23084189.

Abstract

Salty environments are widely known to be inhospitable to most microorganisms. For centuries salt has been used as a food preservative, while highly saline environments were considered uninhabited by organisms, and if habited, only by prokaryotic ones. Nowadays, we know that filamentous fungi are widespread in many saline habitats very often characterized also by other extremes, for example, very low or high temperature, lack of light, high pressure, or low water activity. However, fungi are still the least understood organisms among halophiles, even though they have been shown to counteract these unfavorable conditions by producing multiple secondary metabolites with interesting properties or unique biomolecules as one of their survival strategies. In this review, we focused on biomolecules obtained from halophilic filamentous fungi such as enzymes, pigments, biosurfactants, and osmoprotectants.

摘要

咸环境被广泛认为对大多数微生物不友好。几个世纪以来,盐一直被用作食品防腐剂,而高盐环境被认为没有生物居住,如果有生物居住,也只有原核生物。如今,我们知道丝状真菌广泛存在于许多盐生栖息地,这些栖息地通常还具有其他极端条件,例如极低或高温、缺乏光照、高压或低水活度。然而,真菌仍然是盐生生物中了解最少的生物,尽管它们已经被证明可以通过产生具有有趣特性的多种次生代谢物或独特的生物分子作为其生存策略之一来对抗这些不利条件。在这篇综述中,我们重点介绍了从嗜盐丝状真菌中获得的生物分子,如酶、色素、生物表面活性剂和渗透调节剂。

相似文献

1
Metabolic Potential of Halophilic Filamentous Fungi-Current Perspective.
Int J Mol Sci. 2022 Apr 10;23(8):4189. doi: 10.3390/ijms23084189.
2
Halophilic filamentous fungi and their enzymes: Potential biotechnological applications.
J Biotechnol. 2024 Feb 10;381:11-18. doi: 10.1016/j.jbiotec.2023.12.008. Epub 2023 Dec 28.
4
Diversity of halophilic microorganisms: environments, phylogeny, physiology, and applications.
J Ind Microbiol Biotechnol. 2002 Jan;28(1):56-63. doi: 10.1038/sj/jim/7000176.
5
Biotechnology of marine fungi.
Prog Mol Subcell Biol. 2012;53:277-97. doi: 10.1007/978-3-642-23342-5_14.
6
The mycobiota of the salterns.
Prog Mol Subcell Biol. 2012;53:133-58. doi: 10.1007/978-3-642-23342-5_7.
7
Adaptive modifications in membranes of halotolerant and halophilic microorganisms.
J Bioenerg Biomembr. 1989 Feb;21(1):93-113. doi: 10.1007/BF00762214.
8
Microbial diversity in polyextreme salt flats and their potential applications.
Environ Sci Pollut Res Int. 2024 Feb;31(8):11371-11405. doi: 10.1007/s11356-023-31644-9. Epub 2024 Jan 5.
9
Fungi in salterns.
J Microbiol. 2019 Sep;57(9):717-724. doi: 10.1007/s12275-019-9195-3. Epub 2019 Aug 27.
10
Unusual fungal niches.
Mycologia. 2011 Nov-Dec;103(6):1161-74. doi: 10.3852/11-108.

引用本文的文献

1
Halophilic and halotolerant fungi across diverse climates: a comparative study of Polish and Italian soil ecosystems.
Front Microbiol. 2025 Jul 28;16:1637496. doi: 10.3389/fmicb.2025.1637496. eCollection 2025.
2
Continuous Valorization of Carbon Dioxide into the Fine Chemical Ectoine by : A New Strategy for Pharmaceutical Production.
Environ Sci Technol. 2025 Mar 18;59(10):5088-5097. doi: 10.1021/acs.est.4c12259. Epub 2025 Mar 4.
3
Halophilic Fungi-Features and Potential Applications.
Microorganisms. 2025 Jan 15;13(1):175. doi: 10.3390/microorganisms13010175.
4
Biotechnological potential of salt tolerant and xerophilic species of Aspergillus.
Appl Microbiol Biotechnol. 2024 Nov 19;108(1):521. doi: 10.1007/s00253-024-13338-5.
6
Exploring extremophilic fungi in soil mycobiome for sustainable agriculture amid global change.
Nat Commun. 2024 Aug 13;15(1):6951. doi: 10.1038/s41467-024-51223-x.
8
Biocontrol Potential of Sodin 5, Type 1 Ribosome-Inactivating Protein from L. Seeds.
Biomolecules. 2024 Mar 12;14(3):336. doi: 10.3390/biom14030336.
9
Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi.
J Fungi (Basel). 2024 Feb 13;10(2):152. doi: 10.3390/jof10020152.

本文引用的文献

1
Recent Antimicrobial Responses of Halophilic Microbes in Clinical Pathogens.
Microorganisms. 2022 Feb 11;10(2):417. doi: 10.3390/microorganisms10020417.
2
Biosurfactant production by halophilic yeasts isolated from extreme environments in Botswana.
FEMS Microbiol Lett. 2021 Nov 30;368(20). doi: 10.1093/femsle/fnab146.
4
Correlation between the synthesis of pullulan and melanin in Aureobasidium pullulans.
Int J Biol Macromol. 2021 Apr 30;177:252-260. doi: 10.1016/j.ijbiomac.2021.02.108. Epub 2021 Feb 17.
7
Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives.
Antioxidants (Basel). 2020 Nov 26;9(12):1183. doi: 10.3390/antiox9121183.
8
Microbial production of melanin and its various applications.
World J Microbiol Biotechnol. 2020 Oct 12;36(11):170. doi: 10.1007/s11274-020-02941-z.
9
Cerato-Platanins from Marine Fungi as Effective Protein Biosurfactants and Bioemulsifiers.
Int J Mol Sci. 2020 Apr 21;21(8):2913. doi: 10.3390/ijms21082913.
10
Stress Reshapes the Physiological Response of Halophile Fungi to Salinity.
Cells. 2020 Feb 25;9(3):525. doi: 10.3390/cells9030525.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验