Wang Qinqin, Tang Jian, Li Xiaomei, Tian Jinpeng, Liang Jing, Li Na, Ji Depeng, Xian Lede, Guo Yutuo, Li Lu, Zhang Qinghua, Chu Yanbang, Wei Zheng, Zhao Yanchong, Du Luojun, Yu Hua, Bai Xuedong, Gu Lin, Liu Kaihui, Yang Wei, Yang Rong, Shi Dongxia, Zhang Guangyu
Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
Collaborative Innovation Center of Quantum Matter and School of Physics, Peking University, Beijing 100871, China.
Natl Sci Rev. 2022 Apr 21;9(6):nwac077. doi: 10.1093/nsr/nwac077. eCollection 2022 Jun.
The 2D semiconductor of MoS has great potential for advanced electronics technologies beyond silicon. So far, high-quality monolayer MoS wafers have been available and various demonstrations from individual transistors to integrated circuits have also been shown. In addition to the monolayer, multilayers have narrower band gaps but improved carrier mobilities and current capacities over the monolayer. However, achieving high-quality multi-layer MoS wafers remains a challenge. Here we report the growth of high-quality multi-layer MoS 4-inch wafers via the layer-by-layer epitaxy process. The epitaxy leads to well-defined stacking orders between adjacent epitaxial layers and offers a delicate control of layer numbers up to six. Systematic evaluations on the atomic structures and electronic properties were carried out for achieved wafers with different layer numbers. Significant improvements in device performances were found in thicker-layer field-effect transistors (FETs), as expected. For example, the average field-effect mobility ( ) at room temperature (RT) can increase from ∼80 cm·V·s for monolayers to ∼110/145 cm·V·s for bilayer/trilayer devices. The highest RT of 234.7 cm·V·s and record-high on-current densities of 1.70 mA·μm at = 2 V were also achieved in trilayer MoS FETs with a high on/off ratio of >10. Our work hence moves a step closer to practical applications of 2D MoS in electronics.
与硅相比,二维半导体二硫化钼(MoS)在先进电子技术方面具有巨大潜力。到目前为止,高质量的单层MoS晶圆已经可以获得,并且还展示了从单个晶体管到集成电路的各种演示。除了单层之外,多层的带隙更窄,但与单层相比,其载流子迁移率和电流容量有所提高。然而,获得高质量的多层MoS晶圆仍然是一个挑战。在此,我们报告了通过逐层外延工艺生长高质量的多层MoS 4英寸晶圆。这种外延导致相邻外延层之间具有明确的堆叠顺序,并能够精确控制层数,最多可达六层。对所制备的不同层数的晶圆进行了原子结构和电子性质的系统评估。正如预期的那样,在较厚层的场效应晶体管(FET)中发现器件性能有显著改善。例如,室温(RT)下的平均场效应迁移率( )可以从单层的约80 cm²·V⁻¹·s⁻¹增加到双层/三层器件的约110/145 cm²·V⁻¹·s⁻¹。在具有大于10的高开/关比的三层MoS FET中,还实现了234.7 cm²·V⁻¹·s⁻¹的最高室温迁移率以及在Vds = 2 V时创纪录的1.70 mA·μm⁻¹的导通电流密度。因此,我们的工作朝着二维MoS在电子学中的实际应用又迈进了一步。