Suppr超能文献

差异隐私对少数民族群体参与医疗补助的影响。

The effect of differential privacy on Medicaid participation among racial and ethnic minority groups.

机构信息

Munich School of Management and Munich Center of Health Sciences, Ludwig-Maximilians-Universität München, Munich, Germany.

Institute of Health Economics and Health Care Management, Helmholtz Zentrum München, Neuherberg, Germany.

出版信息

Health Serv Res. 2022 Dec;57 Suppl 2(Suppl 2):207-213. doi: 10.1111/1475-6773.14000. Epub 2022 May 20.

Abstract

OBJECTIVE

To investigate how county and state-level estimates of Medicaid enrollment among the total, non-Hispanic White, non-Hispanic Black or African American, and Hispanic or Latino/a population are affected by Differential Privacy (DP), where statistical noise is added to the public decennial US census data to protect individual privacy.

DATA SOURCES

We obtained population counts from the final version of the US Census Bureau Differential Privacy Demonstration Products from 2010 and combined them with Medicaid enrollment data.

STUDY DESIGN

We compared 2010 county and state-level population counts released under the traditional disclosure avoidance techniques and the ones produced with the proposed DP procedures.

DATA COLLECTION/EXTRACTION METHODS: Not applicable.

PRINCIPAL FINDINGS

We find the DP method introduces errors up to 10% into counts and proportions of Medicaid participation rate accuracy at the county level, especially for small subpopulations and racial and ethnic minority groups. The effect of DP on Medicaid participation rate accuracy is only small and negligible at the state level.

CONCLUSIONS

The implementation of DP in the 2020 census can affect the analyses of health disparities and health care access and use among different subpopulations in the United States. The planned implementation of DP in other census-related surveys such as the American Community Survey can misrepresent Medicaid participation rates for small racial and ethnic minority groups. This can affect Medicaid funding decisions.

摘要

目的

调查在使用差分隐私(DP)技术时,县和州级的医疗补助参保人数估计数(包括总人口、非西班牙裔白人、非西班牙裔黑人和西班牙裔或拉丁裔)会受到怎样的影响,该技术会向公开的美国十年期人口普查数据中添加统计噪声,以保护个人隐私。

数据来源

我们从美国人口普查局 2010 年差分隐私示范产品的最终版本中获取了人口计数,并将其与医疗补助参保数据相结合。

研究设计

我们比较了在传统披露回避技术下发布的 2010 年县和州级人口计数,以及使用拟议 DP 程序生成的计数。

数据收集/提取方法:不适用。

主要发现

我们发现 DP 方法会给县一级的医疗补助参保率的计数和比例带来高达 10%的误差,尤其是对小的亚群和少数族裔群体而言。DP 对州一级医疗补助参保率准确性的影响则很小,可以忽略不计。

结论

2020 年人口普查中 DP 的实施可能会影响美国不同亚群的健康差异和医疗保健获取和使用的分析。计划在其他与人口普查相关的调查(如美国社区调查)中实施 DP 可能会对小的少数族裔群体的医疗补助参保率产生错误估计,从而影响医疗补助资金的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b64/9660420/38377193fd32/HESR-57-207-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验