Suppr超能文献

用于多重成像优化和可重复分析的框架。

A framework for multiplex imaging optimization and reproducible analysis.

机构信息

Department of Biomedical Engineering, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.

Knight Cancer Institute, School of Medicine, Oregon Health and Science University, Portland, OR, 97239, USA.

出版信息

Commun Biol. 2022 May 11;5(1):438. doi: 10.1038/s42003-022-03368-y.

Abstract

Multiplex imaging technologies are increasingly used for single-cell phenotyping and spatial characterization of tissues; however, transparent methods are needed for comparing the performance of platforms, protocols and analytical pipelines. We developed a python software, mplexable, for reproducible image processing and utilize Jupyter notebooks to share our optimization of signal removal, antibody specificity, background correction and batch normalization of the multiplex imaging with a focus on cyclic immunofluorescence (CyCIF). Our work both improves the CyCIF methodology and provides a framework for multiplexed image analytics that can be easily shared and reproduced.

摘要

多重成像技术越来越多地用于单细胞表型分析和组织的空间特征描述;然而,需要透明的方法来比较平台、协议和分析管道的性能。我们开发了一个名为 mplexable 的 Python 软件,用于可重复的图像处理,并利用 Jupyter 笔记本共享我们对信号去除、抗体特异性、背景校正和多重成像的批归一化的优化,重点是循环免疫荧光(CyCIF)。我们的工作既改进了 CyCIF 方法,又为可轻松共享和重现的多重成像分析框架提供了支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8dd/9095647/d69cbf9e05da/42003_2022_3368_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验