State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark.
Microb Biotechnol. 2022 Sep;15(9):2324-2336. doi: 10.1111/1751-7915.14075. Epub 2022 May 16.
Pseudomonas chlororaphis is a non-pathogenic, plant growth-promoting rhizobacterium that secretes phenazine compounds with broad-spectrum antibiotic activity. Currently available genome-editing methods for P. chlororaphis are based on homologous recombination (HR)-dependent allelic exchange, which requires both exogenous DNA repair proteins (e.g. λ-Red-like systems) and endogenous functions (e.g. RecA) for HR and/or providing donor DNA templates. In general, these procedures are time-consuming, laborious and inefficient. Here, we established a CRISPR-assisted base-editing (CBE) system based on the fusion of a rat cytidine deaminase (rAPOBEC1), enhanced-specificity Cas9 nickase (eSpCas9pp ) and uracil DNA glycosylase inhibitor (UGI). This CBE system converts C:G into T:A without DNA strands breaks or any donor DNA template. By engineering a premature STOP codon in target spacers, the hmgA and phzO genes of P. chlororaphis were successfully interrupted at high efficiency. The phzO-inactivated strain obtained by base editing exhibited identical phenotypic features as compared with a mutant obtained by HR-based allelic exchange. The use of this CBE system was extended to other P. chlororaphis strains (subspecies LX24 and HT66) and also to P. fluorescens 10586, with an equally high editing efficiency. The wide applicability of this CBE method will accelerate bacterial physiology research and metabolic engineering of non-traditional bacterial hosts.
铜绿假单胞菌是一种非致病性、促进植物生长的根际细菌,它分泌具有广谱抗生素活性的吩嗪类化合物。目前用于铜绿假单胞菌的基因组编辑方法基于同源重组(HR)依赖性等位基因交换,这需要外源性 DNA 修复蛋白(例如 λ-Red 样系统)和内源性功能(例如 RecA)进行 HR 和/或提供供体 DNA 模板。一般来说,这些程序耗时、费力且效率低下。在这里,我们建立了一个基于融合大鼠胞嘧啶脱氨酶(rAPOBEC1)、增强特异性 Cas9 切口酶(eSpCas9pp)和尿嘧啶 DNA 糖基化酶抑制剂(UGI)的 CRISPR 辅助碱基编辑(CBE)系统。该 CBE 系统无需 DNA 链断裂或任何供体 DNA 模板即可将 C:G 转换为 T:A。通过在靶标间隔区工程化一个过早的终止密码子,成功地以高效率中断了铜绿假单胞菌的 hmgA 和 phzO 基因。与基于 HR 的等位基因交换获得的突变体相比,通过碱基编辑获得的 phzO 失活菌株表现出相同的表型特征。该 CBE 系统的应用扩展到其他铜绿假单胞菌菌株(亚种 LX24 和 HT66)和荧光假单胞菌 10586,编辑效率同样很高。这种 CBE 方法的广泛适用性将加速非传统细菌宿主的细菌生理学研究和代谢工程。