Suppr超能文献

生物化学药物-药物相互作用预测:通过自注意力机制融合生化和结构信息来预测药物-药物相互作用

BioChemDDI: Predicting Drug-Drug Interactions by Fusing Biochemical and Structural Information through a Self-Attention Mechanism.

作者信息

Ren Zhong-Hao, Yu Chang-Qing, Li Li-Ping, You Zhu-Hong, Pan Jie, Guan Yong-Jian, Guo Lu-Xiang

机构信息

School of Information Engineering, Xijing University, Xi'an 710123, China.

College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi 830052, China.

出版信息

Biology (Basel). 2022 May 16;11(5):758. doi: 10.3390/biology11050758.

Abstract

During the development of drug and clinical applications, due to the co-administration of different drugs that have a high risk of interfering with each other's mechanisms of action, correctly identifying potential drug-drug interactions (DDIs) is important to avoid a reduction in drug therapeutic activities and serious injuries to the organism. Therefore, to explore potential DDIs, we develop a computational method of integrating multi-level information. Firstly, the information of chemical sequence is fully captured by the Natural Language Processing (NLP) algorithm, and multiple biological function similarity information is fused by Similarity Network Fusion (SNF). Secondly, we extract deep network structure information through Hierarchical Representation Learning for Networks (HARP). Then, a highly representative comprehensive feature descriptor is constructed through the self-attention module that efficiently integrates biochemical and network features. Finally, a deep neural network (DNN) is employed to generate the prediction results. Contrasted with the previous supervision model, BioChemDDI innovatively introduced graph collapse for extracting a network structure and utilized the biochemical information during the pre-training process. The prediction results of the benchmark dataset indicate that BioChemDDI outperforms other existing models. Moreover, the case studies related to three cancer diseases, including breast cancer, hepatocellular carcinoma and malignancies, were analyzed using BioChemDDI. As a result, 24, 18 and 20 out of the top 30 predicted cancer-related drugs were confirmed by the databases. These experimental results demonstrate that BioChemDDI is a useful model to predict DDIs and can provide reliable candidates for biological experiments. The web server of BioChemDDI predictor is freely available to conduct further studies.

摘要

在药物研发和临床应用过程中,由于同时使用的不同药物存在相互干扰作用机制的高风险,正确识别潜在的药物 - 药物相互作用(DDIs)对于避免药物治疗活性降低和对机体造成严重损伤至关重要。因此,为了探索潜在的DDIs,我们开发了一种整合多层次信息的计算方法。首先,通过自然语言处理(NLP)算法充分捕捉化学序列信息,并通过相似性网络融合(SNF)融合多种生物功能相似性信息。其次,我们通过网络分层表示学习(HARP)提取深度网络结构信息。然后,通过自注意力模块构建一个具有高度代表性的综合特征描述符,该模块有效地整合了生化和网络特征。最后,采用深度神经网络(DNN)生成预测结果。与先前的监督模型相比,BioChemDDI创新性地引入了图折叠来提取网络结构,并在预训练过程中利用了生化信息。基准数据集的预测结果表明,BioChemDDI优于其他现有模型。此外,使用BioChemDDI对与三种癌症疾病相关的案例进行了分析,这三种癌症包括乳腺癌、肝细胞癌和恶性肿瘤。结果,预测的前30种与癌症相关的药物中有24种、18种和20种被数据库证实。这些实验结果表明,BioChemDDI是一种预测DDIs的有用模型,可为生物学实验提供可靠的候选药物。BioChemDDI预测器的网络服务器可免费获取,用于进一步研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验