Suppr超能文献

动力差协方差在多尺度神经系统中恢复有向网络结构。

Dynamical differential covariance recovers directional network structure in multiscale neural systems.

机构信息

Computational Neurobiology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA 92037.

Section of Neurobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

出版信息

Proc Natl Acad Sci U S A. 2022 Jun 14;119(24):e2117234119. doi: 10.1073/pnas.2117234119. Epub 2022 Jun 9.

Abstract

Investigating neural interactions is essential to understanding the neural basis of behavior. Many statistical methods have been used for analyzing neural activity, but estimating the direction of network interactions correctly and efficiently remains a difficult problem. Here, we derive dynamical differential covariance (DDC), a method based on dynamical network models that detects directional interactions with low bias and high noise tolerance under nonstationarity conditions. Moreover, DDC scales well with the number of recording sites and the computation required is comparable to that needed for covariance. DDC was validated and compared favorably with other methods on networks with false positive motifs and multiscale neural simulations where the ground-truth connectivity was known. When applied to recordings of resting-state functional magnetic resonance imaging (rs-fMRI), DDC consistently detected regional interactions with strong structural connectivity in over 1,000 individual subjects obtained by diffusion MRI (dMRI). DDC is a promising family of methods for estimating connectivity that can be generalized to a wide range of dynamical models and recording techniques and to other applications where system identification is needed.

摘要

研究神经相互作用对于理解行为的神经基础至关重要。已经有许多统计方法被用于分析神经活动,但正确且有效地估计网络相互作用的方向仍然是一个难题。在这里,我们推导出基于动态网络模型的动态差分协方差(DDC)方法,该方法在非平稳条件下具有低偏差和高噪声容忍度,可以检测具有方向性的相互作用。此外,DDC 可以很好地扩展到记录站点的数量,并且所需的计算量与协方差所需的计算量相当。DDC 在具有虚假正模体的网络和多尺度神经模拟中得到了验证,并与其他方法进行了比较,在这些网络和模拟中,连通性的真实情况是已知的。当应用于静息态功能磁共振成像(rs-fMRI)的记录时,DDC 在超过 1000 个通过弥散磁共振成像(dMRI)获得的个体受试者中,一致地检测到具有强结构连通性的区域相互作用。DDC 是一种用于估计连通性的很有前途的方法系列,它可以推广到广泛的动态模型和记录技术以及其他需要系统识别的应用中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8931/9214501/950544212e24/pnas.2117234119fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验