Suppr超能文献

基于深度神经网络的视网膜图像糖尿病预测。

Prediction of Diabetes through Retinal Images Using Deep Neural Network.

机构信息

Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Jun 3;2022:7887908. doi: 10.1155/2022/7887908. eCollection 2022.

Abstract

Microvascular problems of diabetes, such as diabetic retinopathy and macular edema, can be seen in the eye's retina, and the retinal images are being used to screen for and diagnose the illness manually. Using deep learning to automate this time-consuming process might be quite beneficial. In this paper, a deep neural network, i.e., convolutional neural network, has been proposed for predicting diabetes through retinal images. Before applying the deep neural network, the dataset is preprocessed and normalised for classification. Deep neural network is constructed by using 7 layers, 5 kernels, and ReLU activation function, and MaxPooling is implemented to combine important features. Finally, the model is implemented to classify whether the retinal image belongs to a diabetic or nondiabetic class. The parameters used for evaluating the model are accuracy, precision, recall, and F1 score. The implemented model has achieved a training accuracy of more than 95%, which is much better than the other states of the art algorithms.

摘要

糖尿病的微血管问题,如糖尿病视网膜病变和黄斑水肿,可以在眼睛的视网膜上看到,并且正在使用视网膜图像来手动筛查和诊断这种疾病。使用深度学习来自动化这个耗时的过程可能会非常有益。在本文中,提出了一种深度神经网络,即卷积神经网络,用于通过视网膜图像预测糖尿病。在应用深度神经网络之前,对数据集进行预处理和归一化以进行分类。深度神经网络由 7 层、5 个核和 ReLU 激活函数构建,并实现了 MaxPooling 以组合重要特征。最后,实现模型以分类视网膜图像属于糖尿病或非糖尿病类别。用于评估模型的参数是准确性、精度、召回率和 F1 分数。实现的模型的训练准确率超过 95%,这比其他最先进的算法要好得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c548/9187442/c1ebfb283db7/CIN2022-7887908.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验