文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

量化大型都会区中 SARS-CoV-2 传播事件的重要性和位置。

Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas.

机构信息

ISI Foundation, 10126 Turin, Italy.

Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain.

出版信息

Proc Natl Acad Sci U S A. 2022 Jun 28;119(26):e2112182119. doi: 10.1073/pnas.2112182119. Epub 2022 Jun 13.


DOI:10.1073/pnas.2112182119
PMID:35696558
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9245708/
Abstract

Detailed characterization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission across different settings can help design less disruptive interventions. We used real-time, privacy-enhanced mobility data in the New York City, NY and Seattle, WA metropolitan areas to build a detailed agent-based model of SARS-CoV-2 infection to estimate the where, when, and magnitude of transmission events during the pandemic's first wave. We estimate that only 18% of individuals produce most infections (80%), with about 10% of events that can be considered superspreading events (SSEs). Although mass gatherings present an important risk for SSEs, we estimate that the bulk of transmission occurred in smaller events in settings like workplaces, grocery stores, or food venues. The places most important for transmission change during the pandemic and are different across cities, signaling the large underlying behavioral component underneath them. Our modeling complements case studies and epidemiological data and indicates that real-time tracking of transmission events could help evaluate and define targeted mitigation policies.

摘要

详细描述严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)在不同环境中的传播情况,可以帮助设计出干扰性更小的干预措施。我们使用了纽约市和西雅图的实时、增强隐私的移动数据,构建了一个详细的基于代理的 SARS-CoV-2 感染模型,以估计大流行第一波期间传播事件的地点、时间和规模。我们估计只有 18%的个体产生了大部分感染(80%),其中约 10%的事件可被视为超级传播事件(SSEs)。尽管大型集会是 SSEs 的一个重要风险,但我们估计大部分传播发生在工作场所、杂货店或食品场所等较小的事件中。在大流行期间,传播最重要的地方发生了变化,并且在不同城市之间也有所不同,这表明它们背后存在着很大的潜在行为因素。我们的模型补充了病例研究和流行病学数据,并表明实时跟踪传播事件可以帮助评估和定义有针对性的缓解政策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/e5861183de2e/pnas.2112182119fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/0f29b5ddc50e/pnas.2112182119fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/195eb0d2fdcc/pnas.2112182119fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/e0ee67fdabdf/pnas.2112182119fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/1014ff9688d9/pnas.2112182119fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/e5861183de2e/pnas.2112182119fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/0f29b5ddc50e/pnas.2112182119fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/195eb0d2fdcc/pnas.2112182119fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/e0ee67fdabdf/pnas.2112182119fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/1014ff9688d9/pnas.2112182119fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/02a1/9245708/e5861183de2e/pnas.2112182119fig05.jpg

相似文献

[1]
Quantifying the importance and location of SARS-CoV-2 transmission events in large metropolitan areas.

Proc Natl Acad Sci U S A. 2022-6-28

[2]
Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: a model-based analysis.

Lancet Infect Dis. 2021-2

[3]
Contact tracing reveals community transmission of COVID-19 in New York City.

Nat Commun. 2022-10-23

[4]
Clustering and superspreading potential of SARS-CoV-2 infections in Hong Kong.

Nat Med. 2020-9-17

[5]
Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for interventions and control.

PLoS Biol. 2020-11-12

[6]
Estimating the Epidemic Size of Superspreading Coronavirus Outbreaks in Real Time: Quantitative Study.

JMIR Public Health Surveill. 2024-2-12

[7]
Dynamic Panel Data Modeling and Surveillance of COVID-19 in Metropolitan Areas in the United States: Longitudinal Trend Analysis.

J Med Internet Res. 2021-2-9

[8]
Superspreading events of SARS-CoV-2 in Paris: A retrospective analysis of data from the first wave of COVID-19 in 2020.

J Infect Public Health. 2021-11

[9]
Superspreading Event of SARS-CoV-2 Infection at a Bar, Ho Chi Minh City, Vietnam.

Emerg Infect Dis. 2021-1

[10]
Heterogeneity in transmissibility and shedding SARS-CoV-2 via droplets and aerosols.

Elife. 2021-4-16

引用本文的文献

[1]
Inferring the timing of individual mobility decisions from accommodation reservation data during the COVID-19 outbreak.

R Soc Open Sci. 2025-7-30

[2]
Socioeconomic disparities in mobility behavior during the COVID-19 pandemic in developing countries.

EPJ Data Sci. 2025

[3]
Generalized contact matrices allow integrating socioeconomic variables into epidemic models.

Sci Adv. 2024-10-11

[4]
Estimating the contribution of setting-specific contacts to SARS-CoV-2 transmission using digital contact tracing data.

Nat Commun. 2024-7-19

[5]
Geography versus sociodemographics as predictors of changes in daily mobility across the USA during the COVID-19 pandemic: a two-stage regression analysis across 26 metropolitan areas.

BMJ Open. 2024-7-9

[6]
Static graph approximations of dynamic contact networks for epidemic forecasting.

Sci Rep. 2024-5-22

[7]
Open-source data pipeline for street-view images: A case study on community mobility during COVID-19 pandemic.

PLoS One. 2024

[8]
Characterizing collective physical distancing in the U.S. during the first nine months of the COVID-19 pandemic.

PLOS Digit Health. 2024-2-6

[9]
The unequal effects of the health-economy trade-off during the COVID-19 pandemic.

Nat Hum Behav. 2024-2

[10]
Heterogeneous changes in mobility in response to the SARS-CoV-2 Omicron BA.2 outbreak in Shanghai.

Proc Natl Acad Sci U S A. 2023-10-17

本文引用的文献

[1]
Mobility patterns are associated with experienced income segregation in large US cities.

Nat Commun. 2021-7-30

[2]
Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China.

Nat Commun. 2021-3-9

[3]
Retail store customer flow and COVID-19 transmission.

Proc Natl Acad Sci U S A. 2021-3-16

[4]
Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2.

Science. 2021-1-15

[5]
Hospital-Acquired SARS-CoV-2 Infection: Lessons for Public Health.

JAMA. 2020-12-1

[6]
Superspreading events in the transmission dynamics of SARS-CoV-2: Opportunities for interventions and control.

PLoS Biol. 2020-11-12

[7]
Mobility network models of COVID-19 explain inequities and inform reopening.

Nature. 2021-1

[8]
Real-time, interactive website for US-county-level COVID-19 event risk assessment.

Nat Hum Behav. 2020-11-9

[9]
Differential effects of intervention timing on COVID-19 spread in the United States.

Sci Adv. 2020-12-4

[10]
Epidemiology and transmission dynamics of COVID-19 in two Indian states.

Science. 2020-9-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索