Department of Anatomy & Neurobiology, University of California, Irvine, CA, 92697, USA.
Epilepsy Research Center, University of California, Irvine, CA, 92697, USA.
Nat Commun. 2022 Jun 14;13(1):3417. doi: 10.1038/s41467-022-31072-2.
Despite the fundamental importance of understanding the brain's wiring diagram, our knowledge of how neuronal connectivity is rewired by traumatic brain injury remains remarkably incomplete. Here we use cellular resolution whole-brain imaging to generate brain-wide maps of the input to inhibitory neurons in a mouse model of traumatic brain injury. We find that somatostatin interneurons are converted into hyperconnected hubs in multiple brain regions, with rich local network connections but diminished long-range inputs, even at areas not directly damaged. The loss of long-range input does not correlate with cell loss in distant brain regions. Interneurons transplanted into the injury site receive orthotopic local and long-range input, suggesting the machinery for establishing distant connections remains intact even after a severe injury. Our results uncover a potential strategy to sustain and optimize inhibition after traumatic brain injury that involves spatial reorganization of the direct inputs to inhibitory neurons across the brain.
尽管了解大脑连接图具有重要意义,但我们对创伤性脑损伤如何重塑神经元连接的认识仍相当不完全。在这里,我们使用细胞分辨率的全脑成像,在创伤性脑损伤的小鼠模型中生成抑制性神经元输入的脑宽图。我们发现,生长抑素中间神经元在多个脑区转化为超连接的中枢,具有丰富的局部网络连接,但远距离输入减少,即使在未直接受损的区域也是如此。远距离输入的丧失与远距离脑区的细胞丢失无关。移植到损伤部位的中间神经元接收原位的局部和远距离输入,这表明即使在严重损伤后,建立远距离连接的机制仍然完整。我们的结果揭示了一种在创伤性脑损伤后维持和优化抑制的潜在策略,涉及到整个大脑中抑制性神经元直接输入的空间重组。