CO-IRv2:基于 InceptionResNetV2 的优化模型,用于从胸部 CT 图像中检测 COVID-19。

CO-IRv2: Optimized InceptionResNetV2 for COVID-19 detection from chest CT images.

机构信息

Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.

出版信息

PLoS One. 2021 Oct 28;16(10):e0259179. doi: 10.1371/journal.pone.0259179. eCollection 2021.

Abstract

This paper focuses on the application of deep learning (DL) in the diagnosis of coronavirus disease (COVID-19). The novelty of this work is in the introduction of optimized InceptionResNetV2 for COVID-19 (CO-IRv2) method. A part of the CO-IRv2 scheme is derived from the concepts of InceptionNet and ResNet with hyperparameter tuning, while the remaining part is a new architecture consisting of a global average pooling layer, batch normalization, dense layers, and dropout layers. The proposed CO-IRv2 is applied to a new dataset of 2481 computed tomography (CT) images formed by collecting two independent datasets. Data resizing and normalization are performed, and the evaluation is run up to 25 epochs. Various performance metrics, including precision, recall, accuracy, F1-score, area under the receiver operating characteristics (AUC) curve are used as performance metrics. The effectiveness of three optimizers known as Adam, Nadam and RMSProp are evaluated in classifying suspected COVID-19 patients and normal people. Results show that for CO-IRv2 and for CT images, the obtained accuracies of Adam, Nadam and RMSProp optimizers are 94.97%, 96.18% and 96.18%, respectively. Furthermore, it is shown here that for the case of CT images, CO-IRv2 with Nadam optimizer has better performance than existing DL algorithms in the diagnosis of COVID-19 patients. Finally, CO-IRv2 is applied to an X-ray dataset of 1662 images resulting in a classification accuracy of 99.40%.

摘要

本文重点研究深度学习(DL)在冠状病毒病(COVID-19)诊断中的应用。本工作的新颖之处在于引入了优化的 InceptionResNetV2 用于 COVID-19(CO-IRv2)方法。CO-IRv2 方案的一部分源自 InceptionNet 和 ResNet 的概念,同时进行了超参数调整,而其余部分则是由全局平均池化层、批量归一化、密集层和随机失活层组成的新架构。所提出的 CO-IRv2 应用于由两个独立数据集收集形成的 2481 张计算机断层扫描(CT)图像的新数据集。进行数据调整和归一化,并运行评估,直到达到 25 个时期。使用精度、召回率、准确性、F1 得分、接收者操作特性(ROC)曲线下面积(AUC)等各种性能指标作为性能指标。评估了三种称为 Adam、Nadam 和 RMSProp 的优化器在分类疑似 COVID-19 患者和正常人方面的有效性。结果表明,对于 CO-IRv2 和 CT 图像,Adam、Nadam 和 RMSProp 优化器的准确率分别为 94.97%、96.18%和 96.18%。此外,这里还表明,对于 CT 图像的情况,具有 Nadam 优化器的 CO-IRv2 在 COVID-19 患者的诊断中比现有的 DL 算法具有更好的性能。最后,CO-IRv2 应用于 1662 张图像的 X 射线数据集,分类准确率为 99.40%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d701/8553063/ee125f869a8e/pone.0259179.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索