Suppr超能文献

一种多组学方法,用于理解如何转化非木质纤维素材料。

A Multiomic Approach to Understand How Transforms Non-Woody Lignocellulosic Material.

作者信息

Peña Ander, Babiker Rashid, Chaduli Delphine, Lipzen Anna, Wang Mei, Chovatia Mansi, Rencoret Jorge, Marques Gisela, Sánchez-Ruiz María Isabel, Kijpornyongpan Teeratas, Salvachúa Davinia, Camarero Susana, Ng Vivian, Gutiérrez Ana, Grigoriev Igor V, Rosso Marie-Noëlle, Martínez Angel T, Ruiz-Dueñas Francisco J

机构信息

Centro de Investigaciones Biológicas Margarita Salas (CIB), Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain.

Institut National de Recherche Pour L'agriculture, L'alimentation et L'environnement (INRAE), Aix Marseille Université, Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.

出版信息

J Fungi (Basel). 2021 May 28;7(6):426. doi: 10.3390/jof7060426.

Abstract

is a grassland-inhabiting fungus of biotechnological interest due to its ability to colonize non-woody lignocellulosic material. Genomic, transcriptomic, exoproteomic, and metabolomic analyses were combined to explain the enzymatic aspects underlaying wheat-straw transformation. Up-regulated and constitutive glycoside-hydrolases, polysaccharide-lyases, and carbohydrate-esterases active on polysaccharides, laccases active on lignin, and a surprisingly high amount of constitutive/inducible aryl-alcohol oxidases (AAOs) constituted the suite of extracellular enzymes at early fungal growth. Higher enzyme diversity and abundance characterized the longer-term growth, with an array of oxidoreductases involved in depolymerization of both cellulose and lignin, which were often up-regulated since initial growth. These oxidative enzymes included lytic polysaccharide monooxygenases (LPMOs) acting on crystalline polysaccharides, cellobiose dehydrogenase involved in LPMO activation, and ligninolytic peroxidases (mainly manganese-oxidizing peroxidases), together with highly abundant HO-producing AAOs. Interestingly, some of the most relevant enzymes acting on polysaccharides were appended to a cellulose-binding module. This is potentially related to the non-woody habitat of (in contrast to the wood habitat of many basidiomycetes). Additionally, insights into the intracellular catabolism of aromatic compounds, which is a neglected area of study in lignin degradation by basidiomycetes, were also provided. The multiomic approach reveals that although non-woody decay does not result in dramatic modifications, as revealed by detailed 2D-NMR and other analyses, it implies activation of the complete set of hydrolytic and oxidative enzymes characterizing lignocellulose-decaying basidiomycetes.

摘要

是一种生长在草原的真菌,因其能够定殖于非木质木质纤维素材料而具有生物技术研究价值。综合基因组学、转录组学、胞外蛋白质组学和代谢组学分析,以解释小麦秸秆转化背后的酶学方面。上调的和组成型的糖苷水解酶、多糖裂解酶以及作用于多糖的碳水化合物酯酶、作用于木质素的漆酶,以及数量惊人的组成型/诱导型芳基醇氧化酶(AAO)构成了真菌早期生长时的胞外酶组合。酶的多样性和丰度在长期生长过程中更高,一系列氧化还原酶参与纤维素和木质素的解聚,这些酶自初始生长以来通常上调。这些氧化酶包括作用于结晶多糖的裂解多糖单加氧酶(LPMO)、参与LPMO激活的纤维二糖脱氢酶,以及木质素分解过氧化物酶(主要是锰氧化过氧化物酶),还有大量产生H₂O₂的AAO。有趣的是,一些作用于多糖的最相关酶与一个纤维素结合模块相连。这可能与它的非木质栖息地有关(与许多担子菌的木质栖息地形成对比)。此外,还提供了对芳香化合物细胞内分解代谢的见解,这是担子菌木质素降解研究中一个被忽视的领域。多组学方法表明,尽管如详细的二维核磁共振和其他分析所揭示的,非木质腐烂不会导致显著变化,但它意味着激活了表征木质纤维素降解担子菌的全套水解酶和氧化酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acf1/8227661/fb21a68638fd/jof-07-00426-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验