Suppr超能文献

新型3D打印甲基丙烯酸化壳聚糖-锂皂石纳米硅酸盐复合支架促进MC3T3前成骨细胞的细胞生长和生物矿化形成。

Novel 3D-printed methacrylated chitosan-laponite nanosilicate composite scaffolds enhance cell growth and biomineral formation in MC3T3 pre-osteoblasts.

作者信息

Cebe Tugba, Ahuja Neelam, Monte Felipe, Awad Kamal, Vyavhare Kimaya, Aswath Pranesh, Huang Jian, Brotto Marco, Varanasi Venu

机构信息

Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, USA.

Department of Graduate Nursing, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas 76019, USA.

出版信息

J Mater Res. 2020 Jan;35(1):58-75. doi: 10.1557/jmr.2018.260. Epub 2020 Jan 1.

Abstract

This study compared the effect of gelatin- and chitosan-based scaffolds on osteoblast biomineralization. These scaffolds have been modified using methacrylate and laponite nanosilicates to improve their mechanical strength and support osteoblast function. Scaffold materials were prepared to have the same compressive strength (14-15 MPa) such that differences in cell response would be isolated to differences in biopolymer chemistry. The materials were tested for rheological properties to optimize the bio-ink for successful 3D printing using a robocast-assisted deposition system. Osteoblasts were cultured on the surface of 3D-printed methacrylated chitosan-laponite (MAC-Lp), methacrylated gelatin-laponite (MAG-Lp), MAC, and MAG scaffolds. MAC-Lp scaffolds showed increased cell viability, cell growth, and biomineral formation as compared to MAG-Lp scaffolds. FTIR results showed the presence of higher biomineral phosphate and extracellular matrix (ECM) collagen-like amide formation on MAC-Lp scaffolds as compared to MAG-Lp scaffolds. MAC-Lp scaffolds showed increased density of ECM-like tissue from SEM analysis, stained mineral nodules from Alizarin staining, and the existence of Ca─P species evident by X-ray absorbance near edge structure analysis. In conclusion, MAC-Lp scaffolds enhanced osteoblast growth and biomineral formation as compared to MAG-Lp scaffolds.

摘要

本研究比较了明胶基和壳聚糖基支架对成骨细胞生物矿化的影响。这些支架已用甲基丙烯酸酯和锂皂石纳米硅酸盐进行了改性,以提高其机械强度并支持成骨细胞功能。制备的支架材料具有相同的抗压强度(14 - 15兆帕),以便将细胞反应的差异分离为生物聚合物化学组成的差异。对这些材料进行流变学性能测试,以优化生物墨水,以便使用机器人铸造辅助沉积系统成功进行3D打印。将成骨细胞培养在3D打印的甲基丙烯酸化壳聚糖 - 锂皂石(MAC - Lp)、甲基丙烯酸化明胶 - 锂皂石(MAG - Lp)、MAC和MAG支架表面。与MAG - Lp支架相比,MAC - Lp支架显示出更高的细胞活力、细胞生长和生物矿化形成。傅里叶变换红外光谱(FTIR)结果表明,与MAG - Lp支架相比,MAC - Lp支架上存在更高的生物矿化磷酸盐和细胞外基质(ECM)胶原样酰胺形成。扫描电子显微镜(SEM)分析显示MAC - Lp支架上类似ECM的组织密度增加,茜素红染色显示有染色的矿化结节,X射线吸收近边结构分析表明存在钙磷物种。总之,与MAG - Lp支架相比,MAC - Lp支架增强了成骨细胞生长和生物矿化形成。

相似文献

2
Preparation, characterization and bioactivities of nano anhydrous calcium phosphate added gelatin-chitosan scaffolds for bone tissue engineering.
J Biomater Sci Polym Ed. 2019 Dec;30(18):1756-1778. doi: 10.1080/09205063.2019.1663474. Epub 2019 Sep 17.
3
A natural biomineral for enhancing the biomineralization and cell response of 3D printed polylactic acid bone scaffolds.
Int J Biol Macromol. 2023 Jul 1;242(Pt 1):124728. doi: 10.1016/j.ijbiomac.2023.124728. Epub 2023 May 5.
4
3D Printed Chitosan Composite Scaffold for Chondrocytes Differentiation.
Curr Med Imaging. 2021;17(7):832-842. doi: 10.2174/1573405616666201217112939.
10
[Osteogenesis effect of dynamic mechanical loading on MC3T3-E1 cells in three-dimensional printing biomimetic composite scaffolds].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2018 Apr 15;32(4):448-456. doi: 10.7507/1002-1892.201711091.

引用本文的文献

1
Extracellular-Matrix-Mimetic Hydrogels by Using Nanomaterials.
Int J Mol Sci. 2025 May 22;26(11):4987. doi: 10.3390/ijms26114987.
3
Nanomaterials-incorporated hydrogels for 3D bioprinting technology.
Nano Converg. 2023 Nov 15;10(1):52. doi: 10.1186/s40580-023-00402-5.
4
Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration.
Beilstein J Nanotechnol. 2022 Sep 29;13:1051-1067. doi: 10.3762/bjnano.13.92. eCollection 2022.
5
Two-dimensional nanomaterials-added dynamism in 3D printing and bioprinting of biomedical platforms: Unique opportunities and challenges.
Biomaterials. 2022 May;284:121507. doi: 10.1016/j.biomaterials.2022.121507. Epub 2022 Apr 5.
6
Interfacial adhesion and surface bioactivity of anodized titanium modified with SiON and SiONP surface coatings.
Surf Interfaces. 2022 Feb;28. doi: 10.1016/j.surfin.2021.101645. Epub 2021 Nov 28.
7
Hypoxia-mimicking 3D bioglass-nanoclay scaffolds promote endogenous bone regeneration.
Bioact Mater. 2021 Mar 21;6(10):3485-3495. doi: 10.1016/j.bioactmat.2021.03.011. eCollection 2021 Oct.
8
Ionic Silicon Protects Oxidative Damage and Promotes Skeletal Muscle Cell Regeneration.
Int J Mol Sci. 2021 Jan 6;22(2):497. doi: 10.3390/ijms22020497.

本文引用的文献

1
Bioactive nanoengineered hydrogels for bone tissue engineering: a growth-factor-free approach.
ACS Nano. 2015 Mar 24;9(3):3109-18. doi: 10.1021/nn507488s. Epub 2015 Feb 25.
2
Bone apatite composition of necrotic trabecular bone in the femoral head of immature piglets.
Calcif Tissue Int. 2015 Apr;96(4):324-34. doi: 10.1007/s00223-015-9959-7. Epub 2015 Feb 7.
3
Porosity and dielectric properties as tools to predict drug release trends from hydrogels.
Springerplus. 2014 Jul 29;3:393. doi: 10.1186/2193-1801-3-393. eCollection 2014.
5
Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.
Langmuir. 2014 Feb 18;30(6):1636-42. doi: 10.1021/la4045623. Epub 2014 Feb 3.
6
Autograft, allograft and bone substitutes in reconstructive orthopedic surgery.
Aging Clin Exp Res. 2013 Oct;25 Suppl 1:S101-3. doi: 10.1007/s40520-013-0088-8. Epub 2013 Sep 18.
7
XANES analysis of dried and calcined bones.
Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):3968-79. doi: 10.1016/j.msec.2013.05.038. Epub 2013 May 25.
8
Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells.
Adv Mater. 2013 Jun 25;25(24):3329-36. doi: 10.1002/adma.201300584. Epub 2013 May 13.
10
Increased matrix synthesis by fibroblasts with decreased proliferation on synthetic chitosan-gelatin porous structures.
Biotechnol Bioeng. 2012 May;109(5):1314-25. doi: 10.1002/bit.24396. Epub 2011 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验