Zhang Tianjiao, Wong Garry
Cancer Centre, Centre for Reproduction, Development and Aging, Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Taipa 999078, Macau Special Administrative Region.
Comput Struct Biotechnol J. 2022 Jul 13;20:3851-3863. doi: 10.1016/j.csbj.2022.07.018. eCollection 2022.
Weighted gene co-expression network analysis (WGCNA) is used to detect clusters with highly correlated genes. Measurements of correlation most typically rely on linear relationships. However, a linear relationship does not always model pairwise functional-related dependence between genes. In this paper, we first compared 6 different correlation methods in their ability to capture complex dependence between genes in three different tissues. Next, we compared their gene-pairwise coefficient results and corresponding WGCNA results. Finally, we applied a recently proposed correlation method, Hellinger correlation, as a more sensitive correlation measurement in WGCNA. To test this method, we constructed gene networks containing co-expression gene modules from RNA-seq data of human frontal cortex from Alzheimer's disease patients. To test the generality, we also used a microarray data set from human frontal cortex, single cell RNA-seq data from human prefrontal cortex, RNA-seq data from human temporal cortex, and GTEx data from heart. The Hellinger correlation method captures essentially similar results as other linear correlations in WGCNA, but provides additional new functional relationships as exemplified by uncovering a link between inflammation and mitochondria function. We validated the network constructed with the microarray and single cell sequencing data sets and a RNA-seq dataset of temporal cortex. We observed that this new correlation method enables the detection of non-linear biologically meaningful relationships among genes robustly and provides a complementary new approach to WGCNA. Thus, the application of Hellinger correlation to WGCNA provides a more flexible correlation approach to modelling networks in gene expression analysis that uncovers novel network relationships.
加权基因共表达网络分析(WGCNA)用于检测具有高度相关基因的聚类。相关性测量通常最依赖线性关系。然而,线性关系并不总是能够模拟基因之间成对的功能相关依赖性。在本文中,我们首先比较了6种不同的相关性方法在捕获三种不同组织中基因之间复杂依赖性方面的能力。接下来,我们比较了它们的基因对系数结果和相应的WGCNA结果。最后,我们应用了一种最近提出的相关性方法——Hellinger相关性,作为WGCNA中一种更敏感的相关性测量方法。为了测试这种方法,我们从阿尔茨海默病患者的人类额叶皮质RNA测序数据构建了包含共表达基因模块的基因网络。为了测试其通用性,我们还使用了来自人类额叶皮质的微阵列数据集、来自人类前额叶皮质的单细胞RNA测序数据、来自人类颞叶皮质的RNA测序数据以及来自心脏的GTEx数据。Hellinger相关性方法在WGCNA中获得的结果与其他线性相关性基本相似,但提供了额外的新功能关系,例如揭示了炎症与线粒体功能之间的联系。我们验证了用微阵列和单细胞测序数据集以及颞叶皮质的RNA测序数据集构建的网络。我们观察到,这种新的相关性方法能够稳健地检测基因之间非线性的生物学有意义的关系,并为WGCNA提供了一种互补的新方法。因此,将Hellinger相关性应用于WGCNA为基因表达分析中的网络建模提供了一种更灵活的相关性方法,能够揭示新的网络关系。