Keutzer Lina, You Huifang, Farnoud Ali, Nyberg Joakim, Wicha Sebastian G, Maher-Edwards Gareth, Vlasakakis Georgios, Moghaddam Gita Khalili, Svensson Elin M, Menden Michael P, Simonsson Ulrika S H
Department of Pharmaceutical Biosciences, Uppsala University, 75124 Uppsala, Sweden.
Computational Health Center, Helmholtz Munich, 85764 Neuherberg, Germany.
Pharmaceutics. 2022 Jul 22;14(8):1530. doi: 10.3390/pharmaceutics14081530.
Pharmacometrics (PM) and machine learning (ML) are both valuable for drug development to characterize pharmacokinetics (PK) and pharmacodynamics (PD). Pharmacokinetic/pharmacodynamic (PKPD) analysis using PM provides mechanistic insight into biological processes but is time- and labor-intensive. In contrast, ML models are much quicker trained, but offer less mechanistic insights. The opportunity of using ML predictions of drug PK as input for a PKPD model could strongly accelerate analysis efforts. Here exemplified by rifampicin, a widely used antibiotic, we explore the ability of different ML algorithms to predict drug PK. Based on simulated data, we trained linear regressions (LASSO), Gradient Boosting Machines, XGBoost and Random Forest to predict the plasma concentration-time series and rifampicin area under the concentration-versus-time curve from 0-24 h (AUC) after repeated dosing. XGBoost performed best for prediction of the entire PK series (: 0.84, root mean square error (RMSE): 6.9 mg/L, mean absolute error (MAE): 4.0 mg/L) for the scenario with the largest data size. For AUC prediction, LASSO showed the highest performance (: 0.97, RMSE: 29.1 h·mg/L, MAE: 18.8 h·mg/L). Increasing the number of plasma concentrations per patient (0, 2 or 6 concentrations per occasion) improved model performance. For example, for AUC prediction using LASSO, the was 0.41, 0.69 and 0.97 when using predictors only (no plasma concentrations), 2 or 6 plasma concentrations per occasion as input, respectively. Run times for the ML models ranged from 1.0 s to 8 min, while the run time for the PM model was more than 3 h. Furthermore, building a PM model is more time- and labor-intensive compared with ML. ML predictions of drug PK could thus be used as input into a PKPD model, enabling time-efficient analysis.
药代动力学(PM)和机器学习(ML)在药物研发中对于表征药代动力学(PK)和药效学(PD)都很有价值。使用PM进行的药代动力学/药效学(PKPD)分析能深入了解生物过程,但耗时且费力。相比之下,ML模型训练速度更快,但提供的机制性见解较少。将药物PK的ML预测结果用作PKPD模型的输入,可能会大大加快分析工作。以广泛使用的抗生素利福平为例,我们探索了不同ML算法预测药物PK的能力。基于模拟数据,我们训练了线性回归(LASSO)、梯度提升机、XGBoost和随机森林,以预测重复给药后0至24小时(AUC)的血浆浓度-时间序列和利福平浓度-时间曲线下面积。在数据量最大的情况下,XGBoost在预测整个PK序列方面表现最佳(相关系数:0.84,均方根误差(RMSE):6.9 mg/L,平均绝对误差(MAE):4.0 mg/L)。对于AUC预测,LASSO表现出最高性能(相关系数:0.97,RMSE:29.1 h·mg/L,MAE:18.8 h·mg/L)。增加每位患者的血浆浓度数量(每次0、2或6个浓度)可提高模型性能。例如,对于使用LASSO进行的AUC预测,仅使用预测因子(无血浆浓度)、每次2个或6个血浆浓度作为输入时,相关系数分别为0.41、0.69和0.97。ML模型的运行时间从1.0秒到8分钟不等,而PM模型的运行时间超过3小时。此外,与ML相比,构建PM模型更耗时且费力。因此,药物PK的ML预测结果可作为PKPD模型的输入,实现高效分析。