Gottschalk Tristan M, Maier Andreas, Kordon Florian, Kreher Björn W
Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
Siemens Healthineers, Forchheim, Germany.
Med Phys. 2023 Jan;50(1):128-141. doi: 10.1002/mp.15909. Epub 2022 Aug 17.
Metallic implants, which are inserted into the patient's body during trauma interventions, are the main cause of heavy artifacts in 3D X-ray acquisitions. These artifacts then hinder the evaluation of the correct implant's positioning, thus leading to a disturbed patient's healing process and increased revision rates.
This problem is tackled by so-called metal artifact reduction (MAR) methods. This paper examines possible advances in the inpainting process of such MAR methods to decrease disruptive artifacts while simultaneously preserving important anatomical structures adjacent to the inserted implants.
In this paper, a learning-based inpainting method for cone-beam computed tomography is proposed that couples a convolutional neural network (CNN) with an estimated metal path length as prior knowledge. Further, the proposed method is solely trained and evaluated on real measured data.
The proposed inpainting approach shows advantages over the inpainting method used by the currently clinically approved frequency split metal artifact reduction (fsMAR) method as well as the learning-based state-of-the-art (SOTA) method PConv-Net. The major improvement of the proposed inpainting method lies in the ability to correctly preserve important anatomical structures in those regions adjacent to the metal implants. Especially these regions are highly important for a correct implant's positioning in an intraoperative setup. Using the proposed inpainting, the corresponding MAR volumes reach a mean structural similarity index measure (SSIM) score of 0.9974 and outperform the other methods by up to 6 dB on single slices regarding the peak signal-to-noise ratio (PSNR) score. Furthermore, it can be shown that the proposed method can generalize to clinical cases at hand.
In this paper, a learning-based inpainting network is proposed that leverages prior knowledge about the metal path length of the inserted implant. Evaluations on real measured data reveal an increased overall MAR performance, especially regarding the preservation of anatomical structures adjacent to the inserted implants. Further evaluations suggest the ability of the proposed approach to generalize to clinical cases.
金属植入物在创伤干预期间被植入患者体内,是三维X射线采集过程中严重伪影的主要原因。这些伪影随后会妨碍对植入物正确位置的评估,从而导致患者愈合过程受阻和翻修率增加。
这个问题通过所谓的金属伪影减少(MAR)方法来解决。本文研究了此类MAR方法在修复过程中可能取得的进展,以减少干扰性伪影,同时保留与植入的金属植入物相邻的重要解剖结构。
本文提出了一种基于学习的锥束计算机断层扫描修复方法,该方法将卷积神经网络(CNN)与估计的金属路径长度作为先验知识相结合。此外,所提出的方法仅在实际测量数据上进行训练和评估。
所提出的修复方法相对于目前临床批准的频率分割金属伪影减少(fsMAR)方法以及基于学习的最新技术(SOTA)方法PConv-Net所使用的修复方法具有优势。所提出的修复方法的主要改进在于能够在与金属植入物相邻的区域正确保留重要的解剖结构。特别是这些区域对于术中设置中植入物的正确定位非常重要。使用所提出的修复方法,相应的MAR体积在平均结构相似性指数测量(SSIM)得分上达到0.9974,并且在单切片的峰值信噪比(PSNR)得分方面比其他方法高出多达6dB。此外,可以证明所提出的方法可以推广到手头的临床病例。
本文提出了一种基于学习的修复网络,该网络利用了关于插入植入物的金属路径长度的先验知识。对实际测量数据的评估显示整体MAR性能有所提高,特别是在保留与插入植入物相邻的解剖结构方面。进一步的评估表明所提出的方法能够推广到临床病例。