Suppr超能文献

使用智能手机应用程序Myworkout GO从亚极量运动预测最大摄氧量:一种数字健康方法的验证研究

Prediction of VO2max From Submaximal Exercise Using the Smartphone Application Myworkout GO: Validation Study of a Digital Health Method.

作者信息

Helgerud Jan, Haglo Håvard, Hoff Jan

机构信息

Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.

Medical Rehabilitation Clinic, Myworkout, Trondheim, Norway.

出版信息

JMIR Cardio. 2022 Aug 4;6(2):e38570. doi: 10.2196/38570.

Abstract

BACKGROUND

Physical inactivity remains the largest risk factor for the development of cardiovascular disease worldwide. Wearable devices have become a popular method of measuring activity-based outcomes and facilitating behavior change to increase cardiorespiratory fitness (CRF) or maximal oxygen consumption (VO) and reduce weight. However, it is critical to determine their accuracy in measuring these variables.

OBJECTIVE

This study aimed to determine the accuracy of using a smartphone and the application Myworkout GO for submaximal prediction of VO.

METHODS

Participants included 162 healthy volunteers: 58 women and 104 men (17-73 years old). The study consisted of 3 experimental tests randomized to 3 separate days. One-day VO was assessed with Metamax II, with the participant walking or running on the treadmill. On the 2 other days, the application Myworkout GO used standardized high aerobic intensity interval training (HIIT) on the treadmill to predict VO.

RESULTS

There were no significant differences between directly measured VO (mean 49, SD 14 mL/kg/min) compared with the VO predicted by Myworkout GO (mean 50, SD 14 mL/kg/min). The direct and predicted VO values were highly correlated, with an R of 0.97 (P<.001) and standard error of the estimate (SEE) of 2.2 mL/kg/min, with no sex differences.

CONCLUSIONS

Myworkout GO accurately calculated VO, with an SEE of 4.5% in the total group. The submaximal HIIT session (4 x 4 minutes) incorporated in the application was tolerated well by the participants. We present health care providers and their patients with a more accurate and practical version of health risk estimation. This might increase physical activity and improve exercise habits in the general population.

摘要

背景

缺乏身体活动仍然是全球心血管疾病发生的最大风险因素。可穿戴设备已成为测量基于活动的结果并促进行为改变以提高心肺适能(CRF)或最大摄氧量(VO)以及减轻体重的常用方法。然而,确定它们在测量这些变量方面的准确性至关重要。

目的

本研究旨在确定使用智能手机及Myworkout GO应用程序对VO进行次极量预测的准确性。

方法

参与者包括162名健康志愿者:58名女性和104名男性(年龄在17 - 73岁之间)。该研究包括3项实验测试,随机安排在3个不同的日子进行。一天使用Metamax II评估VO,参与者在跑步机上行走或跑步。在另外两天,使用Myworkout GO应用程序在跑步机上进行标准化的高有氧强度间歇训练(HIIT)以预测VO。

结果

直接测量的VO(平均值49,标准差14 mL/kg/min)与Myworkout GO预测的VO(平均值50,标准差14 mL/kg/min)之间无显著差异。直接测量值与预测的VO值高度相关,R为0.97(P<0.001),估计标准误差(SEE)为2.2 mL/kg/min,且无性别差异。

结论

Myworkout GO能准确计算VO,全组的SEE为4.5%。应用程序中包含的次极量HIIT训练课程(4×4分钟)参与者耐受性良好。我们为医疗保健提供者及其患者提供了更准确、实用的健康风险评估版本。这可能会增加普通人群的身体活动并改善运动习惯。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22f0/9389381/d3e37ca53120/cardio_v6i2e38570_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验