Lee Changhee, Light Alexander, Saveliev Evgeny S, van der Schaar Mihaela, Gnanapragasam Vincent J
Department of Artificial Intelligence, Chung-Ang University, Seoul, South Korea.
Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK.
NPJ Digit Med. 2022 Aug 6;5(1):110. doi: 10.1038/s41746-022-00659-w.
Active Surveillance (AS) for prostate cancer is a management option that continually monitors early disease and considers intervention if progression occurs. A robust method to incorporate "live" updates of progression risk during follow-up has hitherto been lacking. To address this, we developed a deep learning-based individualised longitudinal survival model using Dynamic-DeepHit-Lite (DDHL) that learns data-driven distribution of time-to-event outcomes. Further refining outputs, we used a reinforcement learning approach (Actor-Critic) for temporal predictive clustering (AC-TPC) to discover groups with similar time-to-event outcomes to support clinical utility. We applied these methods to data from 585 men on AS with longitudinal and comprehensive follow-up (median 4.4 years). Time-dependent C-indices and Brier scores were calculated and compared to Cox regression and landmarking methods. Both Cox and DDHL models including only baseline variables showed comparable C-indices but the DDHL model performance improved with additional follow-up data. With 3 years of data collection and 3 years follow-up the DDHL model had a C-index of 0.79 (±0.11) compared to 0.70 (±0.15) for landmarking Cox and 0.67 (±0.09) for baseline Cox only. Model calibration was good across all models tested. The AC-TPC method further discovered 4 distinct outcome-related temporal clusters with distinct progression trajectories. Those in the lowest risk cluster had negligible progression risk while those in the highest cluster had a 50% risk of progression by 5 years. In summary, we report a novel machine learning approach to inform personalised follow-up during active surveillance which improves predictive power with increasing data input over time.
前列腺癌的主动监测(AS)是一种管理方案,它持续监测早期疾病,并在疾病进展时考虑进行干预。迄今为止,一直缺乏一种在随访期间纳入进展风险“实时”更新的可靠方法。为了解决这个问题,我们使用动态深度命中轻量版(DDHL)开发了一种基于深度学习的个体化纵向生存模型,该模型学习数据驱动的事件发生时间结果分布。为了进一步优化输出,我们使用强化学习方法(行动者-评论家)进行时间预测聚类(AC-TPC),以发现具有相似事件发生时间结果的组,以支持临床应用。我们将这些方法应用于585名接受主动监测且有纵向和全面随访(中位时间4.4年)的男性的数据。计算了时间依赖的C指数和Brier分数,并与Cox回归和地标法进行了比较。仅包括基线变量的Cox模型和DDHL模型显示出可比的C指数,但DDHL模型的性能随着额外随访数据的增加而提高。在收集3年数据并随访3年后,DDHL模型的C指数为0.79(±0.11),而地标Cox模型为0.70(±0.15),仅基线Cox模型为0.67(±0.09)。在所有测试模型中,模型校准都很好。AC-TPC方法进一步发现了4个不同的与结果相关的时间聚类,具有不同的进展轨迹。风险最低聚类中的患者进展风险可忽略不计,而风险最高聚类中的患者到5年时有50%的进展风险。总之,我们报告了一种新颖的机器学习方法,用于在主动监测期间为个性化随访提供信息,随着时间推移数据输入的增加,该方法可提高预测能力。