Suppr超能文献

开发用于前列腺癌主动监测期间进展动态估计的机器学习算法。

Developing machine learning algorithms for dynamic estimation of progression during active surveillance for prostate cancer.

作者信息

Lee Changhee, Light Alexander, Saveliev Evgeny S, van der Schaar Mihaela, Gnanapragasam Vincent J

机构信息

Department of Artificial Intelligence, Chung-Ang University, Seoul, South Korea.

Division of Urology, Department of Surgery, University of Cambridge, Cambridge, UK.

出版信息

NPJ Digit Med. 2022 Aug 6;5(1):110. doi: 10.1038/s41746-022-00659-w.

Abstract

Active Surveillance (AS) for prostate cancer is a management option that continually monitors early disease and considers intervention if progression occurs. A robust method to incorporate "live" updates of progression risk during follow-up has hitherto been lacking. To address this, we developed a deep learning-based individualised longitudinal survival model using Dynamic-DeepHit-Lite (DDHL) that learns data-driven distribution of time-to-event outcomes. Further refining outputs, we used a reinforcement learning approach (Actor-Critic) for temporal predictive clustering (AC-TPC) to discover groups with similar time-to-event outcomes to support clinical utility. We applied these methods to data from 585 men on AS with longitudinal and comprehensive follow-up (median 4.4 years). Time-dependent C-indices and Brier scores were calculated and compared to Cox regression and landmarking methods. Both Cox and DDHL models including only baseline variables showed comparable C-indices but the DDHL model performance improved with additional follow-up data. With 3 years of data collection and 3 years follow-up the DDHL model had a C-index of 0.79 (±0.11) compared to 0.70 (±0.15) for landmarking Cox and 0.67 (±0.09) for baseline Cox only. Model calibration was good across all models tested. The AC-TPC method further discovered 4 distinct outcome-related temporal clusters with distinct progression trajectories. Those in the lowest risk cluster had negligible progression risk while those in the highest cluster had a 50% risk of progression by 5 years. In summary, we report a novel machine learning approach to inform personalised follow-up during active surveillance which improves predictive power with increasing data input over time.

摘要

前列腺癌的主动监测(AS)是一种管理方案,它持续监测早期疾病,并在疾病进展时考虑进行干预。迄今为止,一直缺乏一种在随访期间纳入进展风险“实时”更新的可靠方法。为了解决这个问题,我们使用动态深度命中轻量版(DDHL)开发了一种基于深度学习的个体化纵向生存模型,该模型学习数据驱动的事件发生时间结果分布。为了进一步优化输出,我们使用强化学习方法(行动者-评论家)进行时间预测聚类(AC-TPC),以发现具有相似事件发生时间结果的组,以支持临床应用。我们将这些方法应用于585名接受主动监测且有纵向和全面随访(中位时间4.4年)的男性的数据。计算了时间依赖的C指数和Brier分数,并与Cox回归和地标法进行了比较。仅包括基线变量的Cox模型和DDHL模型显示出可比的C指数,但DDHL模型的性能随着额外随访数据的增加而提高。在收集3年数据并随访3年后,DDHL模型的C指数为0.79(±0.11),而地标Cox模型为0.70(±0.15),仅基线Cox模型为0.67(±0.09)。在所有测试模型中,模型校准都很好。AC-TPC方法进一步发现了4个不同的与结果相关的时间聚类,具有不同的进展轨迹。风险最低聚类中的患者进展风险可忽略不计,而风险最高聚类中的患者到5年时有50%的进展风险。总之,我们报告了一种新颖的机器学习方法,用于在主动监测期间为个性化随访提供信息,随着时间推移数据输入的增加,该方法可提高预测能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/552a/9357044/1124f5f0cffb/41746_2022_659_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验