Suppr超能文献

预测网络赌徒的自我排除行为:一项实证的真实世界研究。

Predicting self-exclusion among online gamblers: An empirical real-world study.

机构信息

Institute of Interactive Systems and Data Science, Graz University of Technology, Inffeldgasse 16C, 8010, Graz, Austria.

neccton GmbH, Davidgasse 5, 7052, Müllendorf, Austria.

出版信息

J Gambl Stud. 2023 Mar;39(1):447-465. doi: 10.1007/s10899-022-10149-z. Epub 2022 Aug 10.

Abstract

Protecting gamblers from problematic gambling behavior is a major concern for clinicians, researchers, and gambling regulators. Most gambling operators offer a range of so-called responsible gambling tools to help players better understand and control their gambling behavior. One such tool is voluntary self-exclusion, which allows players to block themselves from gambling for a self-selected period. Using player tracking data from three online gambling platforms operating across six countries, this study empirically investigated the factors that led players to self-exclude. Specifically, the study tested (i) which behavioral features led to future self-exclusion, and (ii) whether monetary gambling intensity features (i.e., amount of stakes, losses, and deposits) additionally improved the prediction. A total of 25,720 online gamblers (13% female; mean age = 39.9 years) were analyzed, of whom 414 (1.61%) had a future self-exclusion. Results showed that higher odds of future self-exclusion across countries was associated with a (i) higher number of previous voluntary limit changes and self-exclusions, (ii) higher number of different payment methods for deposits, (iii) higher average number of deposits per session, and (iv) higher number of different types of games played. In five out of six countries, none of the monetary gambling intensity features appeared to affect the odds of future self-exclusion given the inclusion of the aforementioned behavioral variables. Finally, the study examined whether the identified behavioral variables could be used by machine learning algorithms to predict future self-exclusions and generalize to gambling populations of other countries and operators. Overall, machine learning algorithms were able to generalize to other countries in predicting future self-exclusions.

摘要

保护赌客免受问题赌博行为的影响是临床医生、研究人员和赌博监管机构的主要关注点。大多数博彩运营商提供一系列所谓的负责任博彩工具,以帮助玩家更好地了解和控制自己的赌博行为。其中一种工具是自愿自我排除,它允许玩家自行选择一段时间内禁止赌博。本研究使用来自横跨六个国家的三个在线博彩平台的玩家跟踪数据,实证研究了导致玩家自我排除的因素。具体来说,该研究检验了:(i)哪些行为特征导致未来自我排除;(ii)货币赌博强度特征(即赌注、损失和存款金额)是否可以进一步提高预测效果。共分析了 25720 名在线赌客(女性占 13%;平均年龄为 39.9 岁),其中 414 名(1.61%)有未来自我排除记录。结果表明,在所有国家,未来自我排除的几率更高与以下因素相关:(i)之前自愿更改限制和自我排除的次数较多;(ii)存款的不同支付方式更多;(iii)每次会话的平均存款次数更多;(iv)玩的不同类型游戏更多。在六个国家中的五个国家中,在纳入上述行为变量的情况下,货币赌博强度特征均不会影响未来自我排除的几率。最后,该研究检验了所确定的行为变量是否可被机器学习算法用于预测未来的自我排除,并推广到其他国家和运营商的赌博人群。总体而言,机器学习算法能够推广到其他国家,以预测未来的自我排除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2aa/9981507/c7f8a8630b6f/10899_2022_10149_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验