Suppr超能文献

通过改变长尾纤维来扩大噬菌体型沙门氏菌的噬菌斑宿主范围并提高其吸收率。

Expansion of the Plaquing Host Range and Improvement of the Absorption Rate of a T5-like Salmonella Phage by Altering the Long Tail Fibers.

机构信息

School of Food Science & Engineering, Ocean University of Chinagrid.4422.0, Qingdao, Shandong Province, China.

出版信息

Appl Environ Microbiol. 2022 Sep 13;88(17):e0089522. doi: 10.1128/aem.00895-22. Epub 2022 Aug 15.

Abstract

The high host specificity of phages is a real challenge in the therapy applications of the individual phages. This study aimed to edit the long tail fiber proteins () of a T5-like phage to obtain the engineered phages with expanded plaquing host range. Two T5-like Salmonella phages with high genome sequence homology but different plaquing host ranges, narrow-host range phage vB STyj5-1 (STyj5-1) and wide-host range phage vB BD13 (BD13), were isolated and characterized. The parts of STyj5-1 were replaced by the corresponding part of BD13 using homologous recombination method to obtain the engineered phages. The alterations of the whole part or the N-terminal amino acids 1-400 of of STyj5-1 could expand their plaquing host ranges (from 20 strains to 30 strains) and improve their absorption rates (from 0.28-28.84% to 28.10-99.49%). Besides, the one-step growth curves of these engineered phages with modified parts were more similar to that of STyj5-1. The burst sizes of phages BD13, STyj5-1 and the engineered phages were 250, 236, 166, and 223 PFU per cell, respectively. The expanded plaquing host range and improved absorption rates of these engineered phages revealed that the part might be the primary determinant of the host specificities of some T5-like phages. Genetic editing can be used to change or expand the host range of phages and have been successfully applied in T2, T4 and other phages to obtain engineered phages. However, there are hardly any similar reports on T5-like phages due to that the determinant regions related to their host ranges have not been completely clarified and the editing of T5-like phages is more difficult compared to other phages. This study attempted and successfully expanded the host range of a narrow-host range T5-like phage (STyj5-1) by exchanging its whole part or the N-terminal 1-400aa of that part by a broad-host range phage (BD13). These demonstrated the part might be the primary determinant of the host specificities for some T5-like phages and provided an effective method of extension plaquing host range of these phages.

摘要

噬菌体的高宿主特异性是其在治疗应用中的一个真正挑战。本研究旨在编辑 T5 样噬菌体的长尾纤维蛋白(),以获得扩展噬菌斑宿主范围的工程噬菌体。本研究分离并鉴定了两株具有高基因组序列同源性但噬菌斑宿主范围不同的 T5 样沙门氏菌噬菌体,即窄宿主范围噬菌体 vB STyj5-1(STyj5-1)和宽宿主范围噬菌体 vB BD13(BD13)。采用同源重组的方法,用 BD13 的相应部分替换 STyj5-1 的部分,获得了工程噬菌体。STyj5-1 的整个部分或 N 端氨基酸 1-400 的改变可以扩大其噬菌斑宿主范围(从 20 株增加到 30 株)并提高其吸收率(从 0.28-28.84%提高到 28.10-99.49%)。此外,这些带有修饰部分的工程噬菌体的一步生长曲线与 STyj5-1 的更为相似。噬菌体 BD13、STyj5-1 和工程噬菌体的爆发大小分别为 250、236、166 和 223 PFU/细胞。这些工程噬菌体噬菌斑宿主范围的扩大和吸收率的提高表明,部分可能是一些 T5 样噬菌体宿主特异性的主要决定因素。遗传编辑可用于改变或扩大噬菌体的宿主范围,并已成功应用于 T2、T4 等噬菌体,以获得工程噬菌体。然而,由于与噬菌体宿主范围相关的决定区域尚未完全阐明,并且与其他噬菌体相比,T5 样噬菌体的编辑更为困难,因此几乎没有关于 T5 样噬菌体的类似报道。本研究尝试并成功地通过交换其整个部分或该部分的 N 端 1-400aa,用宽宿主范围噬菌体(BD13)扩展了窄宿主范围 T5 样噬菌体(STyj5-1)的宿主范围。这些结果表明,部分可能是一些 T5 样噬菌体宿主特异性的主要决定因素,并为扩展这些噬菌体的噬菌斑宿主范围提供了一种有效方法。

相似文献

1
Expansion of the Plaquing Host Range and Improvement of the Absorption Rate of a T5-like Salmonella Phage by Altering the Long Tail Fibers.
Appl Environ Microbiol. 2022 Sep 13;88(17):e0089522. doi: 10.1128/aem.00895-22. Epub 2022 Aug 15.
2
Alterations in gp37 Expand the Host Range of a T4-Like Phage.
Appl Environ Microbiol. 2017 Nov 16;83(23). doi: 10.1128/AEM.01576-17. Print 2017 Dec 1.
4
Morphologic and genomic characterization of a broad host range Salmonella enterica serovar Pullorum lytic phage vB_SPuM_SP116.
Microb Pathog. 2019 Nov;136:103659. doi: 10.1016/j.micpath.2019.103659. Epub 2019 Aug 6.
5
Susceptibility of Pseudomonas aeruginosa veterinary isolates to Pbunavirus PB1-like phages.
Microbiol Immunol. 2020 Nov;64(11):778-782. doi: 10.1111/1348-0421.12846. Epub 2020 Oct 19.
6
Analyses of Short-Term Antagonistic Evolution of Pseudomonas aeruginosa Strain PAO1 and Phage KPP22 (Myoviridae Family, PB1-Like Virus Genus).
Appl Environ Microbiol. 2016 Jul 15;82(15):4482-4491. doi: 10.1128/AEM.00090-16. Print 2016 Aug 1.
7
Salmonella phages isolated from dairy farms in Thailand show wider host range than a comparable set of phages isolated from U.S. dairy farms.
Vet Microbiol. 2014 Aug 6;172(1-2):345-52. doi: 10.1016/j.vetmic.2014.05.023. Epub 2014 May 29.
8
Host range expansion of Acinetobacter phage vB_Ab4_Hep4 driven by a spontaneous tail tubular mutation.
Front Cell Infect Microbiol. 2024 Feb 16;14:1301089. doi: 10.3389/fcimb.2024.1301089. eCollection 2024.
10
Phage S144, A New Polyvalent Phage Infecting spp. and .
Int J Mol Sci. 2020 Jul 22;21(15):5196. doi: 10.3390/ijms21155196.

引用本文的文献

1
Evaluating phage lytic activity: from plaque assays to single-cell technologies.
Front Microbiol. 2025 Aug 29;16:1659093. doi: 10.3389/fmicb.2025.1659093. eCollection 2025.
2
Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application.
Exploration (Beijing). 2025 Apr 3;5(4):e20240045. doi: 10.1002/EXP.20240045. eCollection 2025 Aug.
3
Phages and Control of -Associated Human, Animal, and Plant Diseases.
Microorganisms. 2025 Aug 11;13(8):1873. doi: 10.3390/microorganisms13081873.
4
CRISPR-Cas9 enables efficient genome engineering of the strictly lytic, broad-host-range staphylococcal bacteriophage K.
Appl Environ Microbiol. 2025 Sep 17;91(9):e0201424. doi: 10.1128/aem.02014-24. Epub 2025 Aug 4.
5
Amino acid residues in the tail fiber differentiate the host specificity of bacteriophage.
J Virol. 2025 May 20;99(5):e0028925. doi: 10.1128/jvi.00289-25. Epub 2025 Apr 11.
7
Bacteriophages RCF and 1-6bf can control the growth of avian pathogenic Escherichia coli.
Poult Sci. 2025 Feb;104(2):104790. doi: 10.1016/j.psj.2025.104790. Epub 2025 Jan 9.
8
Engineering Phages to Fight Multidrug-Resistant Bacteria.
Chem Rev. 2025 Jan 22;125(2):933-971. doi: 10.1021/acs.chemrev.4c00681. Epub 2024 Dec 16.
10
A Novel Phage against Bearing a Unique Gene of Intergeneric Origin.
Curr Issues Mol Biol. 2024 Aug 23;46(9):9312-9329. doi: 10.3390/cimb46090551.

本文引用的文献

1
Electrotransformation of thermophilic bacterium Caldimonas manganoxidans.
J Microbiol Methods. 2022 Jan;192:106375. doi: 10.1016/j.mimet.2021.106375. Epub 2021 Nov 15.
2
Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection.
PLoS Biol. 2021 Nov 16;19(11):e3001424. doi: 10.1371/journal.pbio.3001424. eCollection 2021 Nov.
3
Development of new strategy combining heat treatment and phage cocktail for post-contamination prevention.
Food Res Int. 2021 Jul;145:110415. doi: 10.1016/j.foodres.2021.110415. Epub 2021 May 18.
4
Strategies for Bacteriophage T5 Mutagenesis: Expanding the Toolbox for Phage Genome Engineering.
Front Microbiol. 2021 Apr 26;12:667332. doi: 10.3389/fmicb.2021.667332. eCollection 2021.
5
Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future.
BioDrugs. 2021 May;35(3):255-280. doi: 10.1007/s40259-021-00480-z. Epub 2021 Apr 21.
6
Reprogramming bacteriophage host range: design principles and strategies for engineering receptor binding proteins.
Curr Opin Biotechnol. 2021 Apr;68:272-281. doi: 10.1016/j.copbio.2021.02.006. Epub 2021 Mar 18.
7
Synergistic effects of endolysin Lysqdvp001 and ε-poly-lysine in controlling Vibrio parahaemolyticus and its biofilms.
Int J Food Microbiol. 2021 Apr 2;343:109112. doi: 10.1016/j.ijfoodmicro.2021.109112. Epub 2021 Feb 23.
8
Enhancing phage therapy through synthetic biology and genome engineering.
Curr Opin Biotechnol. 2021 Apr;68:151-159. doi: 10.1016/j.copbio.2020.11.003. Epub 2020 Dec 10.
9
Reprogramming Bacteriophage Host Range through Structure-Guided Design of Chimeric Receptor Binding Proteins.
Cell Rep. 2019 Oct 29;29(5):1336-1350.e4. doi: 10.1016/j.celrep.2019.09.062.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验