Suppr超能文献

多尺度时空模型包括从有氧代谢到无氧代谢的转换,可再现早期婴儿肠道微生物群的演替。

A Multiscale Spatiotemporal Model Including a Switch from Aerobic to Anaerobic Metabolism Reproduces Succession in the Early Infant Gut Microbiota.

机构信息

Leiden University, Institute of Biology, Leiden, The Netherlands.

FrieslandCampina, Amersfoort, The Netherlands.

出版信息

mSystems. 2022 Oct 26;7(5):e0044622. doi: 10.1128/msystems.00446-22. Epub 2022 Sep 1.

Abstract

The human intestinal microbiota starts to form immediately after birth and is important for the health of the host. During the first days, facultatively anaerobic bacterial species generally dominate, such as . These are succeeded by strictly anaerobic species, particularly species. An early transition to species is associated with health benefits; for example, species repress growth of pathogenic competitors and modulate the immune response. Succession to is thought to be due to consumption of intracolonic oxygen present in newborns by facultative anaerobes, including . To study if oxygen depletion suffices for the transition to species, here we introduced a multiscale mathematical model that considers metabolism, spatial bacterial population dynamics, and cross-feeding. Using publicly available metabolic network data from the AGORA collection, the model simulates the competition of strictly and facultatively anaerobic species in a gut-like environment under the influence of lactose and oxygen. The model predicts that individual differences in intracolonic oxygen in newborn infants can explain the observed individual variation in succession to anaerobic species, in particular species. species became dominant in the model by their use of the bifid shunt, which allows to switch to suboptimal yield metabolism with fast growth at high lactose concentrations, as predicted here using flux balance analysis. The computational model thus allows us to test the internal plausibility of hypotheses for bacterial colonization and succession in the infant colon. The composition of the infant microbiota has a great impact on infant health, but its controlling factors are still incompletely understood. The frequently dominant anaerobic species benefit health, e.g., they can keep harmful competitors under control and modulate the intestinal immune response. Controlling factors could include nutritional composition and intestinal mucus composition, as well as environmental factors, such as antibiotics. We introduce a modeling framework of a metabolically realistic intestinal microbial ecology in which hypothetical scenarios can be tested and compared. We present simulations that suggest that greater levels of intraintestinal oxygenation more strongly delay the dominance of species, explaining the observed variety of microbial composition and demonstrating the use of the model for hypothesis generation. The framework allowed us to test a variety of controlling factors, including intestinal mixing and transit time. Future versions will also include detailed modeling of oligosaccharide and mucin metabolism.

摘要

人类肠道微生物群在出生后立即开始形成,对宿主的健康至关重要。在最初的几天里,兼性厌氧菌通常占主导地位,例如 。然后是严格厌氧菌,特别是 。早期向 的过渡与健康益处相关;例如, 抑制了致病性竞争者的生长并调节了免疫反应。向 的转变被认为是由于兼性厌氧菌消耗了新生儿结肠内的氧气,包括 。为了研究氧气耗尽是否足以使细菌过渡到 ,我们引入了一个多尺度数学模型,该模型考虑了代谢、空间细菌种群动态和交叉喂养。使用来自 AGORA 集合的公开可用的代谢网络数据,该模型模拟了严格和兼性厌氧菌在乳糖和氧气影响下在类似肠道的环境中的竞争。该模型预测,新生儿结肠内的个体差异可以解释观察到的向厌氧物种(特别是 )的个体变异。通过使用双歧杆菌旁路, 成为模型中的优势菌,使 能够在高乳糖浓度下以快速生长切换到次优产率代谢,这是本文通过通量平衡分析预测的。因此,计算模型使我们能够测试婴儿结肠中细菌定植和演替的假设的内部合理性。婴儿微生物组的组成对婴儿健康有很大影响,但控制因素仍不完全清楚。经常占主导地位的厌氧 对健康有益,例如,它们可以控制有害竞争者并调节肠道免疫反应。控制因素可能包括营养成分和肠道粘液成分,以及环境因素,如抗生素。我们引入了一个代谢上合理的肠道微生物生态学建模框架,可以在其中测试和比较假设场景。我们提出的模拟表明,更高水平的肠内氧合作用更强烈地延迟了 物种的优势地位,解释了观察到的微生物组成多样性,并展示了模型在产生假设方面的用途。该框架使我们能够测试各种控制因素,包括肠道混合和运输时间。未来的版本还将包括对寡糖和粘蛋白代谢的详细建模。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7338/9600552/d0d77b303ce0/msystems.00446-22-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验