Suppr超能文献

英国初级保健中症状性卵巢癌的早期诊断:机遇与挑战。

Early diagnosis of symptomatic ovarian cancer in primary care in the UK: opportunities and challenges.

机构信息

Faculty of Life Sciences and Medicine, King's College London, Guy's Campus, LondonSE1 1UL, UK.

Cambridge Academy of Therapeutic Sciences, University of Cambridge, 17 Mill Lane, CambridgeCB2 1RX, UK.

出版信息

Prim Health Care Res Dev. 2022 Sep 2;23:e52. doi: 10.1017/S146342362200041X.

Abstract

BACKGROUND

Ovarian cancer is the sixth most common cause of cancer-related death in the UK amongst women. Ovarian cancer presents particular challenges for general practitioners (GPs) to diagnose due to its rarity and presentation with non-specific symptoms.

METHODS

A narrative overview of the literature was conducted by searching PubMed and Researchgate for relevant articles, using keywords such as "ovarian cancer," "primary care" and "diagnosis."

RESULTS AND DISCUSSION

Studies have shown that in the UK, GPs have a lower readiness to refer and investigate potential cancer symptoms compared with their international counterparts; and this has been correlated with reduced survival. Early diagnosis can be facilitated through a people-focussed and system-based approach which involves both educating GPs and using risk algorithms, rapid diagnostic centres/multi-disciplinary centres and being data-driven through the identification of best practice from national audits. Further research is required into the best evidence-based early investigations for ovarian cancer and more effective biomarkers.

摘要

背景

在英国,卵巢癌是女性癌症相关死亡的第六大常见原因。由于其罕见性和非特异性症状表现,全科医生(GP)在诊断卵巢癌方面面临特殊挑战。

方法

通过在 PubMed 和 Researchgate 上搜索相关文章,使用“卵巢癌”、“初级保健”和“诊断”等关键词,对文献进行了叙述性综述。

结果与讨论

研究表明,在英国,与国际同行相比,全科医生在转诊和调查潜在癌症症状方面的准备程度较低;这与生存率降低有关。通过以人为本和以系统为基础的方法可以促进早期诊断,该方法既包括对全科医生进行教育,又包括使用风险算法、快速诊断中心/多学科中心,并通过从国家审计中确定最佳实践来实现数据驱动。需要进一步研究卵巢癌的最佳循证早期检查方法和更有效的生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0da6/9472236/2d33abdb333c/S146342362200041X_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验