Suppr超能文献

脉络膜增厚谱系疾病临床发现的流体动力学分析

Hydrodynamic Analysis of the Clinical Findings in Pachychoroid-Spectrum Diseases.

作者信息

Nishi Okihiro, Yasukawa Tsutomu

机构信息

Jinshikai Medical Foundation, Nishi Eye Hospital, 4-14-26 Nakamichi, Higashinari-ku, Osaka 537-0025, Japan.

Department of Ophthalmology and Visual Science, Nagoya City University Graduate School of Medical Sciences, Nagoya 464-0083, Japan.

出版信息

J Clin Med. 2022 Sep 5;11(17):5247. doi: 10.3390/jcm11175247.

Abstract

We wish to demonstrate that theorems of fluid dynamics may be employed to hydrodynamically analyze the clinical presentations seen within the pachychoroid-spectrum diseases (PSD). We employed both the Equation of Continuity Q = A · V in which Q represents blood flow volume, A the sectional area of a vessel, and V blood flow velocity as well as Bernoulli's Principle 1/2 V + P/ρ = constant where V represents blood flow velocity, P static blood pressure and ρ blood density. The Equation of Continuity states that a decrease in flow volume occurs simultaneously with a decrease in the flow velocity and/or sectional area, and vice versa. Bernoulli's Principle states that a decrease in the velocity of a fluid occurs simultaneously with an increase in static pressure, and vice versa. Hyperpermeability of the choriocapillaris, as visualized on fluorescein angiography and indocyanine green angiography (ICGA), causes a fluid exudation and, therefore, a decrease in the blood flow volume Q which elicits a simultaneous decrease in the blood flow velocity V clinically observable in filling delay into the choriocapillaris on ICGA. An increase in the static blood pressure P will simultaneously occur in venules in accord with Bernoulli's Principle. A decrease in the blood flow velocity in the choriocapillaris due to its hyperpermeability will hydrodynamically elicit an increase in the blood pressure in venules. This blood pressure rise may expand Sattler and Haller veins, forming pachyveins. The primary lesion of PSD can be in pigment epithelium and choriocapillaris.

摘要

我们希望证明,流体动力学定理可用于对厚脉络膜谱系疾病(PSD)中的临床表现进行流体动力学分析。我们使用了连续性方程Q = A·V(其中Q代表血流量,A代表血管横截面积,V代表血流速度)以及伯努利原理1/2V + P/ρ =常数(其中V代表血流速度,P代表静态血压,ρ代表血液密度)。连续性方程表明,血流量的减少与流速和/或横截面积的减少同时发生,反之亦然。伯努利原理表明,流体速度的降低与静态压力的增加同时发生,反之亦然。在荧光素血管造影和吲哚菁绿血管造影(ICGA)上可见的脉络膜毛细血管高通透性会导致液体渗出,因此血流量Q减少,这会导致在ICGA上脉络膜毛细血管充盈延迟时临床上可观察到的血流速度V同时降低。根据伯努利原理,小静脉中的静态血压P会同时升高。由于脉络膜毛细血管高通透性导致的血流速度降低会在流体动力学上引起小静脉血压升高。这种血压升高可能会使萨特勒静脉和哈勒静脉扩张,形成厚壁静脉。PSD的主要病变可能位于色素上皮和脉络膜毛细血管。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ebd/9457415/505c2cd6ee06/jcm-11-05247-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验