Suppr超能文献

基于卷积神经网络-长短期记忆网络和改进最大极值蚊群算法的 COVID-19 分类:胸部 X 射线图像分析框架

COVID-19 classification using chest X-ray images: A framework of CNN-LSTM and improved max value moth flame optimization.

机构信息

Department of Computer Science, HITEC University, Taxila, Pakistan.

Department of Mathematics, University of Leicester, Leicester, United Kingdom.

出版信息

Front Public Health. 2022 Aug 30;10:948205. doi: 10.3389/fpubh.2022.948205. eCollection 2022.

Abstract

Coronavirus disease 2019 (COVID-19) is a highly contagious disease that has claimed the lives of millions of people worldwide in the last 2 years. Because of the disease's rapid spread, it is critical to diagnose it at an early stage in order to reduce the rate of spread. The images of the lungs are used to diagnose this infection. In the last 2 years, many studies have been introduced to help with the diagnosis of COVID-19 from chest X-Ray images. Because all researchers are looking for a quick method to diagnose this virus, deep learning-based computer controlled techniques are more suitable as a second opinion for radiologists. In this article, we look at the issue of multisource fusion and redundant features. We proposed a CNN-LSTM and improved max value features optimization framework for COVID-19 classification to address these issues. The original images are acquired and the contrast is increased using a combination of filtering algorithms in the proposed architecture. The dataset is then augmented to increase its size, which is then used to train two deep learning networks called Modified EfficientNet B0 and CNN-LSTM. Both networks are built from scratch and extract information from the deep layers. Following the extraction of features, the serial based maximum value fusion technique is proposed to combine the best information of both deep models. However, a few redundant information is also noted; therefore, an improved max value based moth flame optimization algorithm is proposed. Through this algorithm, the best features are selected and finally classified through machine learning classifiers. The experimental process was conducted on three publically available datasets and achieved improved accuracy than the existing techniques. Moreover, the classifiers based comparison is also conducted and the cubic support vector machine gives better accuracy.

摘要

新型冠状病毒肺炎(COVID-19)是一种高度传染性疾病,在过去 2 年中已在全球夺走了数百万人的生命。由于该疾病传播迅速,因此及早诊断至关重要,以降低传播速度。肺部图像用于诊断这种感染。在过去的 2 年中,已经引入了许多研究来帮助从胸部 X 光图像诊断 COVID-19。由于所有研究人员都在寻找一种快速诊断该病毒的方法,因此基于深度学习的计算机控制技术更适合作为放射科医生的辅助诊断方法。在本文中,我们研究了多源融合和冗余特征的问题。我们提出了一种用于 COVID-19 分类的 CNN-LSTM 和改进的最大特征值优化框架,以解决这些问题。在提出的体系结构中,使用滤波算法组合来获取原始图像并增加对比度。然后对数据集进行扩充以增加其大小,然后使用两个深度学习网络 Modified EfficientNet B0 和 CNN-LSTM 对其进行训练。这两个网络都是从头开始构建的,从深层提取信息。提取特征后,提出了基于序列的最大融合技术来组合两个深度模型的最佳信息。但是,还注意到一些冗余信息;因此,提出了一种改进的基于最大特征值的 moth flame 优化算法。通过该算法选择最佳特征,然后通过机器学习分类器进行分类。在三个公开可用的数据集上进行了实验过程,与现有技术相比,该方法的准确率得到了提高。此外,还进行了基于分类器的比较,立方支持向量机的准确性更高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d58c/9468600/66076e2b7c86/fpubh-10-948205-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验