Suppr超能文献

基于可解释深度学习的皮肤癌病变分类。

Classification of Skin Cancer Lesions Using Explainable Deep Learning.

机构信息

Department of Electrical Engineering, HITEC University Taxila, Taxila 47080, Pakistan.

Department of Cyber Security, Pakistan Navy Engineering College, National University of Sciences & Technology, Karachi 75350, Pakistan.

出版信息

Sensors (Basel). 2022 Sep 13;22(18):6915. doi: 10.3390/s22186915.

Abstract

Skin cancer is among the most prevalent and life-threatening forms of cancer that occur worldwide. Traditional methods of skin cancer detection need an in-depth physical examination by a medical professional, which is time-consuming in some cases. Recently, computer-aided medical diagnostic systems have gained popularity due to their effectiveness and efficiency. These systems can assist dermatologists in the early detection of skin cancer, which can be lifesaving. In this paper, the pre-trained MobileNetV2 and DenseNet201 deep learning models are modified by adding additional convolution layers to effectively detect skin cancer. Specifically, for both models, the modification includes stacking three convolutional layers at the end of both the models. A thorough comparison proves that the modified models show their superiority over the original pre-trained MobileNetV2 and DenseNet201 models. The proposed method can detect both benign and malignant classes. The results indicate that the proposed Modified DenseNet201 model achieves 95.50% accuracy and state-of-the-art performance when compared with other techniques present in the literature. In addition, the sensitivity and specificity of the Modified DenseNet201 model are 93.96% and 97.03%, respectively.

摘要

皮肤癌是全球范围内最常见和最具威胁性的癌症之一。传统的皮肤癌检测方法需要医学专业人员进行深入的身体检查,在某些情况下比较耗时。最近,由于其有效性和效率,计算机辅助医学诊断系统变得越来越受欢迎。这些系统可以帮助皮肤科医生早期发现皮肤癌,从而拯救生命。在本文中,通过在预训练的 MobileNetV2 和 DenseNet201 深度学习模型中添加额外的卷积层,对其进行修改,以有效地检测皮肤癌。具体来说,对于这两个模型,修改包括在模型的末尾堆叠三个卷积层。彻底的比较证明,修改后的模型优于原始的预训练的 MobileNetV2 和 DenseNet201 模型。所提出的方法可以检测良性和恶性两类。结果表明,与文献中存在的其他技术相比,所提出的修改后的 DenseNet201 模型的准确率达到 95.50%,性能达到了最新水平。此外,修改后的 DenseNet201 模型的灵敏度和特异性分别为 93.96%和 97.03%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dac6/9505745/b632a677a1c5/sensors-22-06915-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验