Suppr超能文献

使用非侵入性成像方法的机器学习和放射组学在食管癌中的应用——文献综述

Machine Learning and Radiomics Applications in Esophageal Cancers Using Non-Invasive Imaging Methods-A Critical Review of Literature.

作者信息

Xie Chen-Yi, Pang Chun-Lap, Chan Benjamin, Wong Emily Yuen-Yuen, Dou Qi, Vardhanabhuti Varut

机构信息

Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.

Department of Radiology, The Christies' Hospital, Manchester M20 4BX, UK.

出版信息

Cancers (Basel). 2021 May 19;13(10):2469. doi: 10.3390/cancers13102469.

Abstract

Esophageal cancer (EC) is of public health significance as one of the leading causes of cancer death worldwide. Accurate staging, treatment planning and prognostication in EC patients are of vital importance. Recent advances in machine learning (ML) techniques demonstrate their potential to provide novel quantitative imaging markers in medical imaging. Radiomics approaches that could quantify medical images into high-dimensional data have been shown to improve the imaging-based classification system in characterizing the heterogeneity of primary tumors and lymph nodes in EC patients. In this review, we aim to provide a comprehensive summary of the evidence of the most recent developments in ML application in imaging pertinent to EC patient care. According to the published results, ML models evaluating treatment response and lymph node metastasis achieve reliable predictions, ranging from acceptable to outstanding in their validation groups. Patients stratified by ML models in different risk groups have a significant or borderline significant difference in survival outcomes. Prospective large multi-center studies are suggested to improve the generalizability of ML techniques with standardized imaging protocols and harmonization between different centers.

摘要

食管癌(EC)作为全球癌症死亡的主要原因之一,具有公共卫生意义。对EC患者进行准确分期、治疗规划和预后评估至关重要。机器学习(ML)技术的最新进展表明,它们有潜力在医学成像中提供新的定量成像标志物。放射组学方法可将医学图像量化为高维数据,已被证明能改进基于成像的分类系统,以表征EC患者原发性肿瘤和淋巴结的异质性。在本综述中,我们旨在全面总结ML在与EC患者护理相关的成像应用中的最新进展证据。根据已发表的结果,评估治疗反应和淋巴结转移的ML模型实现了可靠的预测,在其验证组中的预测效果从可接受到出色不等。按ML模型分层到不同风险组的患者在生存结果上有显著或临界显著差异。建议开展前瞻性大型多中心研究,通过标准化成像方案和不同中心之间的协调来提高ML技术的可推广性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/daab/8158761/f1f6db3899fd/cancers-13-02469-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验