Suppr超能文献

在蛋白质组学和转录组学研究中识别受细胞增殖影响的基因。

Identifying the genes impacted by cell proliferation in proteomics and transcriptomics studies.

机构信息

Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Denmark.

出版信息

PLoS Comput Biol. 2022 Oct 6;18(10):e1010604. doi: 10.1371/journal.pcbi.1010604. eCollection 2022 Oct.

Abstract

Hypothesis-free high-throughput profiling allows relative quantification of thousands of proteins or transcripts across samples and thereby identification of differentially expressed genes. It is used in many biological contexts to characterize differences between cell lines and tissues, identify drug mode of action or drivers of drug resistance, among others. Changes in gene expression can also be due to confounding factors that were not accounted for in the experimental plan, such as change in cell proliferation. We combined the analysis of 1,076 and 1,040 cell lines in five proteomics and three transcriptomics data sets to identify 157 genes that correlate with cell proliferation rates. These include actors in DNA replication and mitosis, and genes periodically expressed during the cell cycle. This signature of cell proliferation is a valuable resource when analyzing high-throughput data showing changes in proliferation across conditions. We show how to use this resource to help in interpretation of in vitro drug screens and tumor samples. It informs on differences of cell proliferation rates between conditions where such information is not directly available. The signature genes also highlight which hits in a screen may be due to proliferation changes; this can either contribute to biological interpretation or help focus on experiment-specific regulation events otherwise buried in the statistical analysis.

摘要

无假设的高通量分析可以对数千种蛋白质或转录本在样本中的相对定量,从而鉴定出差异表达的基因。它在许多生物学背景下都有应用,用于描述细胞系和组织之间的差异,识别药物作用模式或耐药性驱动因素等。基因表达的变化也可能是由于实验设计中未考虑到的混杂因素引起的,例如细胞增殖的变化。我们结合了五个蛋白质组学和三个转录组学数据集的 1076 个和 1040 个细胞系的分析,鉴定出了 157 个与细胞增殖率相关的基因。这些基因包括 DNA 复制和有丝分裂中的作用因子,以及细胞周期中周期性表达的基因。当分析显示增殖在不同条件下发生变化的高通量数据时,这个增殖签名是一个有价值的资源。我们展示了如何使用此资源来帮助解释体外药物筛选和肿瘤样本。它提供了在没有直接可用的信息的情况下,对不同条件下细胞增殖率差异的了解。特征基因还突出了筛选中的哪些命中可能是由于增殖变化引起的;这可以有助于生物学解释,或者有助于关注在统计分析中被掩盖的特定于实验的调控事件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89ee/9578628/51c917cf93c6/pcbi.1010604.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验