Suppr超能文献

利用机器学习对急性神经科护理中的患者出院去向进行早期预测。

Early prediction of patient discharge disposition in acute neurological care using machine learning.

机构信息

Department of Computer Science, Winston-Salem State University, Winston-Salem, NC, USA.

Center for Applied Data Science (CADS), Winston-Salem State University, Winston-Salem, USA.

出版信息

BMC Health Serv Res. 2022 Oct 25;22(1):1281. doi: 10.1186/s12913-022-08615-w.

Abstract

BACKGROUND

Acute neurological complications are some of the leading causes of death and disability in the U.S. The medical professionals that treat patients in this setting are tasked with deciding where (e.g., home or facility), how, and when to discharge these patients. It is important to be able to predict potential patient discharge outcomes as early as possible during the patient's hospital stay and to know what factors influence the development of discharge planning. This study carried out two parallel experiments: A multi-class outcome (patient discharge targets of 'home', 'nursing facility', 'rehab', 'death') and binary class outcome ('home' vs. 'non-home'). The goal of this study is to develop early predictive models for each experiment exploring which patient characteristics and clinical variables significantly influence discharge planning of patients based on the data that are available only within 24 h of their hospital admission.  METHOD: Our methodology centers around building and training five different machine learning models followed by testing and tuning those models to find the best-suited predictor for each experiment with a dataset of 5,245 adult patients with neurological conditions taken from the eICU-CRD database.

RESULTS

The results of this study show XGBoost to be the most effective model for predicting between four common discharge outcomes of 'home', 'nursing facility', 'rehab', and 'death', with 71% average c-statistic. The XGBoost model was also the best-performer in the binary outcome experiment with a c-statistic of 76%. This article also explores the accuracy, reliability, and interpretability of the best performing models in each experiment by identifying and analyzing the features that are most impactful to the predictions.

CONCLUSIONS

The acceptable accuracy and interpretability of the predictive models based on early admission data suggests that the models can be used in a suggestive context to help guide healthcare providers in efforts of planning effective and equitable discharge recommendations.

摘要

背景

急性神经系统并发症是导致美国人群死亡和残疾的主要原因之一。在这种情况下治疗患者的医疗专业人员的任务是决定在哪里(例如家庭或医疗机构)、如何以及何时为这些患者办理出院。尽早预测患者在住院期间的潜在出院结果,并了解哪些因素影响出院计划的制定是非常重要的。本研究进行了两项平行实验:多类结果(患者出院目标为“家庭”、“护理院”、“康复”、“死亡”)和二分类结果(“家庭”与“非家庭”)。本研究的目的是为每个实验开发早期预测模型,探索基于患者入院后 24 小时内可用的数据,哪些患者特征和临床变量对患者的出院计划有重大影响。方法:我们的方法围绕构建和训练五个不同的机器学习模型展开,然后对这些模型进行测试和调整,以找到每个实验的最佳预测器,使用的数据集是从 eICU-CRD 数据库中获取的 5245 名患有神经系统疾病的成年患者。结果:本研究的结果表明,XGBoost 是预测“家庭”、“护理院”、“康复”和“死亡”这四个常见出院结果的最有效模型,平均 c 统计量为 71%。XGBoost 模型在二分类结果实验中也是表现最好的模型,c 统计量为 76%。本文还通过识别和分析对预测最有影响的特征,探讨了每个实验中表现最好的模型的准确性、可靠性和可解释性。结论:基于早期入院数据的预测模型具有可接受的准确性和可解释性,表明模型可以在提示性环境中使用,以帮助指导医疗保健提供者制定有效的、公平的出院建议。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5300/9594887/7452d486a114/12913_2022_8615_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验