Ul Haq Nazeef, Tahir Bilal, Firdous Samar, Amir Mehmood Muhammad
Al-Khawarizmi Institute of Computer Science (KICS), University of Engineering and Technology (UET), Lahore, Pakistan.
King Edward Medical University (KEMU), Lahore, Pakistan.
PeerJ Comput Sci. 2022 Oct 26;8:e1090. doi: 10.7717/peerj-cs.1090. eCollection 2022.
Survival prediction of a patient is a critical task in clinical medicine for physicians and patients to make an informed decision. Several survival and risk scoring methods have been developed to estimate the survival score of patients using clinical information. For instance, the Global Registry of Acute Coronary Events (GRACE) and Thrombolysis in Myocardial Infarction (TIMI) risk scores are developed for the survival prediction of heart patients. Recently, state-of-the-art medical imaging and analysis techniques have paved the way for survival prediction of cancer patients by understanding key features extracted from Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) scanned images with the help of image processing and machine learning techniques. However, survival prediction is a challenging task due to the complexity in benchmarking of image features, feature selection methods, and machine learning models. In this article, we evaluate the performance of 156 visual features from radiomic and hand-crafted feature classes, six feature selection methods, and 10 machine learning models to benchmark their performance. In addition, MRI scanned Brain Tumor Segmentation (BraTS) and CT scanned non-small cell lung cancer (NSCLC) datasets are used to train classification and regression models. Our results highlight that logistic regression outperforms for the classification with 66 and 54% accuracy for BraTS and NSCLC datasets, respectively. Moreover, our analysis of best-performing features shows that age is a common and significant feature for survival prediction. Also, gray level and shape-based features play a vital role in regression. We believe that the study can be helpful for oncologists, radiologists, and medical imaging researchers to understand and automate the procedure of decision-making and prognosis of cancer patients.
对患者的生存预测是临床医学中的一项关键任务,有助于医生和患者做出明智的决策。已经开发了几种生存和风险评分方法,以利用临床信息估计患者的生存分数。例如,急性冠状动脉事件全球注册研究(GRACE)和心肌梗死溶栓治疗(TIMI)风险评分就是为预测心脏病患者的生存情况而制定的。最近,借助图像处理和机器学习技术,通过理解从磁共振成像(MRI)和计算机断层扫描(CT)扫描图像中提取的关键特征,先进的医学成像和分析技术为癌症患者的生存预测铺平了道路。然而,由于图像特征的基准测试、特征选择方法和机器学习模型的复杂性,生存预测是一项具有挑战性的任务。在本文中,我们评估了来自放射组学和手工制作特征类别的156个视觉特征、六种特征选择方法和10种机器学习模型的性能,以衡量它们的表现。此外,MRI扫描的脑肿瘤分割(BraTS)数据集和CT扫描的非小细胞肺癌(NSCLC)数据集被用于训练分类和回归模型。我们的结果表明,逻辑回归在分类方面表现出色,在BraTS和NSCLC数据集上的准确率分别为66%和54%。此外,我们对表现最佳特征的分析表明,年龄是生存预测中一个常见且重要的特征。而且,基于灰度和形状的特征在回归中起着至关重要的作用。我们相信这项研究有助于肿瘤学家、放射科医生和医学影像研究人员理解并自动化癌症患者的决策和预后过程。