文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于磁热疗的柠檬酸盐包覆的钙锰铁氧体纳米颗粒的合成及细胞毒性评估

Synthesis and Cytotoxicity Assessment of Citrate-Coated Calcium and Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.

作者信息

Andrade Raquel G D, Ferreira Débora, Veloso Sérgio R S, Santos-Pereira Cátia, Castanheira Elisabete M S, Côrte-Real Manuela, Rodrigues Ligia R

机构信息

Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

LaPMET (Laboratory of Physics for Materials and Emergent Technologies), Associate Laboratory, 4710-057 Braga, Portugal.

出版信息

Pharmaceutics. 2022 Dec 1;14(12):2694. doi: 10.3390/pharmaceutics14122694.


DOI:10.3390/pharmaceutics14122694
PMID:36559189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9784010/
Abstract

Calcium-doped manganese ferrite nanoparticles (NPs) are gaining special interest in the biomedical field due to their lower cytotoxicity compared with other ferrites, and the fact that they have improved magnetic properties. Magnetic hyperthermia (MH) is an alternative cancer treatment, in which magnetic nanoparticles promote local heating that can lead to the apoptosis of cancer cells. In this work, manganese/calcium ferrite NPs coated with citrate (CaMnFeO ( = 0, 0.2, 1), were synthesized by the sol-gel method, followed by calcination, and then characterized regarding their crystalline structure (by X-ray diffraction, XRD), size and shape (by Transmission Electron Microscopy, TEM), hydrodynamic size and zeta potential (by Dynamic Light Scattering, DLS), and heating efficiency (measuring the Specific Absorption Rate, SAR, and Intrinsic Loss Power, ILP) under an alternating magnetic field. The obtained NPs showed a particle size within the range of 10 nm to 20 nm (by TEM) with a spherical or cubic shape. CaMnFeO NPs exhibited the highest SAR value of 36.3 W/g at the lowest field frequency tested, and achieved a temperature variation of ~7 °C in 120 s, meaning that these NPs are suitable magnetic hyperthermia agents. In vitro cellular internalization and cytotoxicity experiments, performed using the human cell line HEK 293T, confirmed cytocompatibility over 0-250 µg/mL range and successful internalization after 24 h. Based on these studies, our data suggest that these manganese-calcium ferrite NPs have potential for MH application and further use in in vivo systems.

摘要

钙掺杂锰铁氧体纳米颗粒(NPs)因其与其他铁氧体相比具有较低的细胞毒性以及具有改善的磁性,在生物医学领域正受到特别关注。磁热疗(MH)是一种替代癌症治疗方法,其中磁性纳米颗粒促进局部加热,可导致癌细胞凋亡。在这项工作中,通过溶胶 - 凝胶法合成了包覆柠檬酸盐的锰/钙铁氧体NPs(CaMnFeO ( = 0, 0.2, 1)),随后进行煅烧,然后通过X射线衍射(XRD)表征其晶体结构,通过透射电子显微镜(TEM)表征其尺寸和形状,通过动态光散射(DLS)表征其流体动力学尺寸和zeta电位,并在交变磁场下测量比吸收率(SAR)和固有损耗功率(ILP)以表征其加热效率。所获得的NPs通过TEM显示粒径在10nm至20nm范围内,形状为球形或立方体形。CaMnFeO NPs在测试的最低场频率下表现出最高SAR值36.3W/g,并在120s内实现了约7°C的温度变化,这意味着这些NPs是合适的磁热疗剂。使用人细胞系HEK 293T进行的体外细胞内化和细胞毒性实验证实了在0 - 250μg/mL范围内的细胞相容性以及24小时后成功内化。基于这些研究,我们的数据表明这些锰 - 钙铁氧体NPs具有磁热疗应用潜力,并可在体内系统中进一步使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/e33a042619eb/pharmaceutics-14-02694-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/70dea089708a/pharmaceutics-14-02694-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/837d9c608dda/pharmaceutics-14-02694-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/03cff5b8f5df/pharmaceutics-14-02694-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/5eafe6aa8f2f/pharmaceutics-14-02694-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/ae54def4ae16/pharmaceutics-14-02694-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/e33a042619eb/pharmaceutics-14-02694-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/70dea089708a/pharmaceutics-14-02694-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/837d9c608dda/pharmaceutics-14-02694-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/03cff5b8f5df/pharmaceutics-14-02694-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/5eafe6aa8f2f/pharmaceutics-14-02694-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/ae54def4ae16/pharmaceutics-14-02694-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ff/9784010/e33a042619eb/pharmaceutics-14-02694-g006.jpg

相似文献

[1]
Synthesis and Cytotoxicity Assessment of Citrate-Coated Calcium and Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.

Pharmaceutics. 2022-12-1

[2]
Oxidative Precipitation Synthesis of Calcium-Doped Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.

Int J Mol Sci. 2022-11-16

[3]
Specific Absorption Rate Dependency on the Co Distribution and Magnetic Properties in CoMnFeO Nanoparticles.

Nanomaterials (Basel). 2021-5-7

[4]
Preparation and characterization of various PVPylated divalent metal-doped ferrite nanoparticles for magnetic hyperthermia.

RSC Adv. 2024-5-14

[5]
Manganese Ferrite Nanoparticles (MnFeO): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI.

Nanomaterials (Basel). 2020-11-20

[6]
Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic FeO Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field.

Nanomaterials (Basel). 2023-1-22

[7]
Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.

Nanomaterials (Basel). 2019-8-16

[8]
Hyperthermia, Cytotoxicity, and Cellular Uptake Properties of Manganese and Zinc Ferrite Magnetic Nanoparticles Synthesized by a Polyol-Mediated Process.

Nanomaterials (Basel). 2019-10-18

[9]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

[10]
Engineered Polyethylene Glycol-Coated Zinc Ferrite Nanoparticles as a Novel Magnetic Resonance Imaging Contrast Agent.

ACS Biomater Sci Eng. 2023-7-10

引用本文的文献

[1]
Magnetic Hyperthermia in Glioblastoma Multiforme Treatment.

Int J Mol Sci. 2024-9-19

[2]
Breast Cancer Treatment Using the Magneto-Hyperthermia Technique Associated with Omega-3 Polyunsaturated Fatty Acids' Supplementation and Physical Training.

Pharmaceutics. 2024-2-22

[3]
Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin.

Pharmaceutics. 2023-8-24

[4]
Prospect of nanomaterials as antimicrobial and antiviral regimen.

AIMS Microbiol. 2023-5-10

[5]
A Strategy for Tuning the Structure, Morphology, and Magnetic Properties of MnFeO/SiO Ceramic Nanocomposites via Mono-, Di-, and Trivalent Metal Ion Doping and Annealing.

Nanomaterials (Basel). 2023-7-22

[6]
Magnetic Nanoparticles for Therapy and Diagnosis in Nanomedicine.

Pharmaceutics. 2023-6-6

[7]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[8]
Metal and Metal Oxides Nanoparticles and Nanosystems in Anticancer and Antiviral Theragnostic Agents.

Pharmaceutics. 2023-4-7

[9]
Reduction-Responsive Stearyl Alcohol-Cabazitaxel Prodrug Nanoassemblies for Cancer Chemotherapy.

Pharmaceutics. 2023-1-12

本文引用的文献

[1]
Novel MR imaging nanoprobe for hepatocellular carcinoma detection based on manganese-zinc ferrite nanoparticles: in vitro and in vivo assessments.

J Cancer Res Clin Oncol. 2023-7

[2]
Intermittent time-set technique controlling the temperature of magnetic-hyperthermia-ablation for tumor therapy.

RSC Adv. 2018-5-3

[3]
Effect of manganese doping on the hyperthermic profile of ferrite nanoparticles using response surface methodology.

RSC Adv. 2021-5-7

[4]
Tuning the drug multimodal release through a co-assembly strategy based on magnetic gels.

Nanoscale. 2022-4-7

[5]
Development of Thermo- and pH-Sensitive Liposomal Magnetic Carriers for New Potential Antitumor Thienopyridine Derivatives.

Materials (Basel). 2022-2-25

[6]
Clinical magnetic hyperthermia requires integrated magnetic particle imaging.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-5

[7]
Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and developing combinatorial therapies to tackle cancer.

Chem Soc Rev. 2021-10-18

[8]
Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release.

Nanomaterials (Basel). 2020-12-23

[9]
The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment.

ACS Appl Mater Interfaces. 2020-9-30

[10]
Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies.

Molecules. 2020-6-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索