文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

钙掺杂锰铁氧体纳米粒子的氧化沉淀法合成及其用于磁热疗

Oxidative Precipitation Synthesis of Calcium-Doped Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.

机构信息

Physics Centre of Minho and Porto Universities (CF-UM-UP) and LaPMET Associate Laboratory, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

出版信息

Int J Mol Sci. 2022 Nov 16;23(22):14145. doi: 10.3390/ijms232214145.


DOI:10.3390/ijms232214145
PMID:36430620
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9695608/
Abstract

Superparamagnetic nanoparticles are of high interest for therapeutic applications. In this work, nanoparticles of calcium-doped manganese ferrites (CaMnFeO) functionalized with citrate were synthesized through thermally assisted oxidative precipitation in aqueous media. The method provided well dispersed aqueous suspensions of nanoparticles through a one-pot synthesis, in which the temperature and Ca/Mn ratio were found to influence the particles microstructure and morphology. Consequently, changes were obtained in the optical and magnetic properties that were studied through UV-Vis absorption and SQUID, respectively. XRD and Raman spectroscopy studies were carried out to assess the microstructural changes associated with stoichiometry of the particles, and the stability in physiological pH was studied through DLS. The nanoparticles displayed high values of magnetization and heating efficiency for several alternating magnetic field conditions, compatible with biological applications. Hereby, the employed method provides a promising strategy for the development of particles with adequate properties for magnetic hyperthermia applications, such as drug delivery and cancer therapy.

摘要

超顺磁纳米颗粒在治疗应用中具有很高的研究价值。在这项工作中,通过水相热辅助氧化沉淀法合成了用柠檬酸功能化的钙掺杂锰铁氧体(CaMnFeO)纳米颗粒。该方法通过一锅合成提供了分散良好的纳米颗粒水悬浮液,其中温度和 Ca/Mn 比发现会影响颗粒的微观结构和形态。因此,通过紫外-可见吸收和 SQUID 分别研究了光学和磁性能的变化。XRD 和拉曼光谱研究用于评估与颗粒化学计量相关的微结构变化,通过 DLS 研究了在生理 pH 值下的稳定性。纳米颗粒在几种交变磁场条件下表现出高磁化强度和加热效率,适用于生物应用。因此,所采用的方法为开发具有用于磁热疗应用(如药物输送和癌症治疗)的适当性能的颗粒提供了一种很有前途的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/813e674c9a28/ijms-23-14145-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/b084943167ad/ijms-23-14145-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/932abb321e12/ijms-23-14145-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/0a9e7bdf4d62/ijms-23-14145-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/d6782e382ee3/ijms-23-14145-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/6d1c5dac45b1/ijms-23-14145-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/f5b6e7e96034/ijms-23-14145-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/813e674c9a28/ijms-23-14145-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/b084943167ad/ijms-23-14145-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/932abb321e12/ijms-23-14145-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/0a9e7bdf4d62/ijms-23-14145-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/d6782e382ee3/ijms-23-14145-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/6d1c5dac45b1/ijms-23-14145-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/f5b6e7e96034/ijms-23-14145-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd95/9695608/813e674c9a28/ijms-23-14145-g007.jpg

相似文献

[1]
Oxidative Precipitation Synthesis of Calcium-Doped Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.

Int J Mol Sci. 2022-11-16

[2]
Synthesis and Cytotoxicity Assessment of Citrate-Coated Calcium and Manganese Ferrite Nanoparticles for Magnetic Hyperthermia.

Pharmaceutics. 2022-12-1

[3]
Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.

ACS Appl Mater Interfaces. 2019-2-7

[4]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

[5]
An aqueous method for the controlled manganese (Mn(2+)) substitution in superparamagnetic iron oxide nanoparticles for contrast enhancement in MRI.

Phys Chem Chem Phys. 2015-2-14

[6]
Study on the efficiency of nanosized magnetite and mixed ferrites in magnetic hyperthermia.

J Mater Sci Mater Med. 2014-10

[7]
Synthesis of Magnetic Ferrite Nanoparticles with High Hyperthermia Performance via a Controlled Co-Precipitation Method.

Nanomaterials (Basel). 2019-8-16

[8]
Cation Incorporation and Synergistic Effects on the Characteristics of Sulfur-Doped Manganese Ferrites S@Mn(FeO) Nanoparticles for Boosted Sunlight-Driven Photocatalysis.

Molecules. 2022-11-8

[9]
Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

J Nanosci Nanotechnol. 2014-1

[10]
A novel strategy combining magnetic particle hyperthermia pulses with enhanced performance binary ferrite carriers for effective in vitro manipulation of primary human osteogenic sarcoma cells.

Int J Hyperthermia. 2016-11

引用本文的文献

[1]
Influence of the pH Synthesis of FeO Magnetic Nanoparticles on Their Applicability for Magnetic Hyperthermia: An In Vitro Analysis.

Pharmaceutics. 2025-6-27

[2]
From detection to elimination: iron-based nanomaterials driving tumor imaging and advanced therapies.

Front Oncol. 2025-2-7

[3]
A Compendium of Magnetic Nanoparticle Essentials: A Comprehensive Guide for Beginners and Experts.

Pharmaceutics. 2025-1-20

[4]
Chitosan/Alginate Nanogels Containing Multicore Magnetic Nanoparticles for Delivery of Doxorubicin.

Pharmaceutics. 2023-8-24

[5]
Electrospun Magnetic Nanofiber Mats for Magnetic Hyperthermia in Cancer Treatment Applications-Technology, Mechanism, and Materials.

Polymers (Basel). 2023-4-15

[6]
Multifunctional Nanomaterials: Synthesis, Properties, and Applications 2.0.

Int J Mol Sci. 2023-4-21

本文引用的文献

[1]
Raman spectroscopy to unravel the magnetic properties of iron oxide nanocrystals for bio-related applications.

Nanoscale Adv. 2019-4-23

[2]
Magnetoliposomes Containing Multicore Nanoparticles and a New Antitumor Thienopyridine Compound with Potential Application in Chemo/Thermotherapy.

Biomedicines. 2022-6-29

[3]
Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications.

J Nanobiotechnology. 2022-6-27

[4]
The Metal Ion Release of Manganese Ferrite Nanoparticles: Kinetics, Effects on Magnetic Resonance Relaxivities, and Toxicity.

ACS Appl Bio Mater. 2022-6-20

[5]
One-step synthesis of polyethyleneimine-coated magnetite nanoparticles and their structural, magnetic and power absorption study.

RSC Adv. 2020-11-17

[6]
Magnetic and spectroscopic properties of Ni-Zn-Al ferrite spinel: from the nanoscale to microscale.

RSC Adv. 2020-9-18

[7]
Effect of manganese doping on the hyperthermic profile of ferrite nanoparticles using response surface methodology.

RSC Adv. 2021-5-7

[8]
Metabolic Conversion and Removal of Manganese Ferrite Nanoparticles in RAW264.7 Cells and Induced Alteration of Metal Transporter Gene Expression.

Int J Nanomedicine. 2021

[9]
Impact of Citrate and Lipid-Functionalized Magnetic Nanoparticles in Dehydropeptide Supramolecular Magnetogels: Properties, Design and Drug Release.

Nanomaterials (Basel). 2020-12-23

[10]
Engineering precision nanoparticles for drug delivery.

Nat Rev Drug Discov. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索