Hajibabaie Fatemeh, Abedpoor Navid, Taghian Farzaneh, Safavi Kamran
Department of Biology, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
Department of Physiology, Medicinal Plants Research Center, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
J Mol Neurosci. 2023 Mar;73(2-3):171-184. doi: 10.1007/s12031-022-02086-8. Epub 2023 Jan 12.
Alzheimer's is a principal concern globally. Machine learning is a valuable tool to determine protective and diagnostic approaches for the elderly. We analyzed microarray datasets of Alzheimer's cases based on artificial intelligence by R statistical software. This study provided a screened pool of ncRNAs and coding RNAs related to Alzheimer's development. We designed hub genes as cut points in networks and predicted potential microRNAs and LncRNA to regulate protein networks in aging and Alzheimer's through in silico algorithms. Notably, we collected effective traditional herbal medicines. A list of bioactive compounds prepared including capsaicin, piperine, crocetin, safranal, saffron oil, coumarin, thujone, rosmarinic acid, sabinene, thymoquinone, ascorbic acid, vitamin E, cyanidin, rhaponticin, isovitexin, coumarin, nobiletin, evodiamine, gingerol, curcumin, quercetin, fisetin, and allicin as an effective fusion that potentially modulates hub proteins and molecular signaling pathways based on pharmacophore model screening and chemoinformatics survey. We identified profiles of 21 mRNAs, 272 microRNAs, and eight LncRNA in Alzheimer's based on prediction algorithms. We suggested a fusion of senolytic herbal ligands as an alternative therapy and preventive formulation in dementia. Also, we provided ncRNAs expression status as novel monitoring strategies in Alzheimer's and new cut-point proteins as novel therapeutic approaches. Synchronizing fusion drugs and lifestyle could reverse Alzheimer's hallmarks to amelioration via an offset of the signaling pathways, leading to increased life quality in the elderly.
阿尔茨海默病是全球主要关注的问题。机器学习是确定针对老年人的保护和诊断方法的宝贵工具。我们使用R统计软件基于人工智能分析了阿尔茨海默病病例的微阵列数据集。这项研究提供了与阿尔茨海默病发展相关的非编码RNA和编码RNA的筛选库。我们将枢纽基因设计为网络中的切点,并通过计算机算法预测潜在的微小RNA和长链非编码RNA来调节衰老和阿尔茨海默病中的蛋白质网络。值得注意的是,我们收集了有效的传统草药。制备了一份生物活性化合物清单,包括辣椒素、胡椒碱、藏红花酸、藏红花醛、藏红花油、香豆素、侧柏酮、迷迭香酸、桧烯、百里醌、抗坏血酸、维生素E、花青素、莱菔子素、异荭草素、香豆素、川陈皮素、吴茱萸碱、姜辣素、姜黄素、槲皮素、非瑟酮和大蒜素,它们是一种有效的融合物,基于药效团模型筛选和化学信息学调查,可能调节枢纽蛋白和分子信号通路。我们基于预测算法确定了阿尔茨海默病中21种信使RNA、272种微小RNA和8种长链非编码RNA的图谱。我们建议将溶酶体衰老草药配体融合作为痴呆症的替代疗法和预防制剂。此外,我们提供了非编码RNA表达状态作为阿尔茨海默病的新型监测策略,以及新的切点蛋白作为新型治疗方法。同步融合药物和生活方式可以通过抵消信号通路来逆转阿尔茨海默病的特征,从而改善病情,提高老年人的生活质量。